

Nalu Documentation

	Nalu Homepage [http://nalucfd.org]

	Nalu Github Homepage [https://github.com/nalucfd/nalu]

	Nalu Nightly Test Results [http://my.cdash.org/index.php?project=Nalu]

	User Manual
	Building Nalu

	Running Nalu

	Developer Manual
	Testing Nalu

	Source Code Documentation

	How to Document Source Code

	How to Write User Documentation

	Building the Documentation

	Developer Workflow Best Practices

	Code Style Guide

	Contributing

	Theory Manual
	1. Low Mach Number Derivation

	2. Supported Equation Set

	3. Discretization Approach

	4. Advection Stabilization

	5. Pressure Stabilization

	6. RTE Stabilization

	7. Nonlinear Stabilization Operator (NSO)

	8. Turbulence Modeling

	9. Supported Boundary Conditions

	10. Overset

	11. Property Evaluations

	12. Coupling Approach

	13. Time discretization

	14. Multi-Physics

	15. Actuator Wind Turbine Aerodynamics Modeling

	16. Topological Support

	17. Adaptivity

	18. Code Abstractions

	19. References

	Verification Manual
	1. Introduction

	2. 2D Unsteady Uniform Property: Convecting Decaying Taylor Vortex

	3. Higher Order 2D Steady Uniform Property: Taylor Vortex

	4. 3D Steady Non-isothermal with Buoyancy

	5. 3D Steady Non-uniform with Buoyancy

	6. 2D Steady Laplace Operator

	7. 3D Steady Laplace Operator with Nonconformal Interface

User Manual

	Building Nalu
	Building Nalu with Spack

	Building Nalu Manually

	Running Nalu
	Exodus-II File Format

	Invoking Nalu - Command-line options

	Nalu Input File

	Transfers

	Simulations

	Examples

	Tutorials

Building Nalu

	Building Nalu with Spack
	Mac OS X or Linux

	NREL’s Peregrine Machine

	NREL’s Merlin Machine

	Development Build of Nalu

	Development Build of Trilinos

	Building Nalu Manually
	Linux and OSX

Building Nalu Semi-Automatically Using Spack

Mac OS X or Linux

The following describes how to build Nalu and its dependencies
mostly automatically on your Mac using
Spack [https://spack.readthedocs.io/en/latest].
This can also be used as a template to build Nalu on any
Linux system with Spack.

Step 1

This assumes you have a (Homebrew) installation of GCC installed already
(we are using GCC 7.2.0). These instructions have been tested on OSX 10.11 and MacOS 10.12.
MacOS 10.12 will not build CMake or Pkg-Config with GCC anymore because they will pick up
system header files that have objective C code in them. We build Nalu using Spack on MacOS Sierra by
using Homebrew to install cmake and pkg-config and defining these
as external packages in Spack (see
packages.yaml [https://github.com/NaluCFD/NaluSpack/blob/master/spack_config/machines/mac_sierra/packages.yaml]).

Step 2

Checkout the official Spack repo from github (we will checkout into ${HOME}):

cd ${HOME} && git clone https://github.com/LLNL/spack.git

Step 3

Add Spack shell support to your .profile or .bash_profile etc, by adding the lines:

export SPACK_ROOT=${HOME}/spack
source ${SPACK_ROOT}/share/spack/setup-env.sh

Step 4

Run the setup_spack.sh [https://github.com/NaluCFD/NaluSpack/blob/master/spack_config/setup_spack.sh]
script from the repo which tries to find out what machine your on and then copies the corresponding *.yaml
configuration files to your Spack installation:

cd ${HOME} && git clone https://github.com/NaluCFD/NaluSpack.git
cd ${HOME}/NaluSpack/spack_config && ./setup_spack.sh

Step 5

Try spack info nalu to see if Spack works. If it does, check the
compilers you have available by:

machine:~ user$ spack compilers
==> Available compilers
-- clang sierra-x86_64 --
clang@9.0.0-apple

-- gcc sierra-x86_64 --
gcc@7.2.0 gcc@6.4.0 gcc@5.4.0

Step 6

Install Nalu with whatever version of GCC (7.2.0 for us) you prefer by editing and running the
install_nalu_gcc_mac.sh script in the NaluSpack [https://github.com/NaluCFD/NaluSpack] repo:

cd ${HOME}/NaluSpack/install_scripts && ./install_nalu_gcc_mac.sh

That should be it! Spack will install using the constraints we’ve specified in shared_constraints.sh
as can be seen in the install script.

NREL’s Peregrine Machine

The following describes how to build Nalu and its dependencies
mostly automatically on NREL’s Peregrine machine using Spack. This can also be
used as a template to help build Nalu on any Linux system with Spack.

Step 1

Login to Peregrine, and checkout the https://github.com/NaluCFD/NaluSpack.git
repo (we will be cloning into the ${HOME} directory):

cd ${HOME} && git clone https://github.com/NaluCFD/NaluSpack.git

One first thing to note is that the login nodes and the compute nodes on Peregrine
run different OSes. So programs will be organized in Spack according to the OS
they were built on, i.e. a login node (rhel6) typically called the front-end or
compute node (centos6) typically called the back-end. You can see this in the
directory structure where the programs will be built which will be located
in ${SPACK_ROOT}/opt. You should build on a compute node.

Step 2

Checkout the official Spack repo from github:

cd ${HOME} && git clone https://github.com/LLNL/spack.git

Step 3

Configure your environment in the recommended way. You should purge all
modules and only load GCC 5.2.0 in your login script. In the example
.bash_profile [https://github.com/NaluCFD/NaluSpack/blob/master/spack_config/machines/peregrine/dot_bash_profile_peregrine.sh]
in the repo we also load Python. If you have problems building with Spack on
Peregrine, it is most likely your environment has deviated from this
recommended one. Even when building with the Intel compiler in Spack,
this is the recommended environment.

{
module purge
module load gcc/5.2.0
module load python/2.7.8
unload mkl
} &> /dev/null

Also add Spack shell support to your .bash_profile as shown in the example
.bash_profile [https://github.com/NaluCFD/NaluSpack/blob/master/spack_config/machines/peregrine/dot_bash_profile_peregrine.sh]
in the repo or the following lines:

export SPACK_ROOT=${HOME}/spack
source ${SPACK_ROOT}/share/spack/setup-env.sh

Log out and log back in or source your .bash_profile to get the Spack
shell support loaded. Try spack info nalu to see if Spack works.

Step 4

Configure Spack for Peregrine. This is done by running the
setup_spack.sh [https://github.com/NaluCFD/NaluSpack/blob/master/spack_config/setup_spack.sh]
script provided which tries finding what machine you’re on and copying the corresponding *.yaml
file to your Spack directory:

cd ${HOME}/NaluSpack/spack_config && ./setup_spack.sh

Step 5

Try spack info nalu to see if Spack works.

Step 6

Note the build scripts provided here adhere to the official versions of the third party libraries
we test with, and that you may want to adhere to using them as well. Also note that
when you checkout the latest Spack, it also means you will be using the latest packages
available if you do not set constraints at install time and the newest packages
may not have been tested to build correctly on NREL machines yet. So specifying
versions of the TPL dependencies in this step is recommended.

Install Nalu using a compute node either interactively
(qsub -V -I -l nodes=1:ppn=24,walltime=4:00:00 -A <allocation> -q short)
with the example script
install_nalu_gcc_peregrine.sh [https://github.com/NaluCFD/NaluSpack/blob/master/install_scripts/install_nalu_gcc_peregrine.sh]
or edit the script to use the correct allocation and qsub install_nalu_gcc_peregrine.sh.

That’s it! Hopefully the install_nalu_gcc_peregrine.sh
script installs the entire set of dependencies and you get a working build
of Nalu on Peregrine...after about 2 hours of waiting for it to build.

To build with the Intel compiler, note the necessary commands in
install_nalu_intel_peregrine.sh [https://github.com/NaluCFD/NaluSpack/blob/master/install_scripts/install_nalu_intel_peregrine.sh]
batch script (note you will need to point ${TMPDIR} to disk as it defaults to
RAM and will cause problems when building Trilinos).

Then to load Nalu (and you will need Spack’s openmpi for Nalu now) into your path you
will need to spack load openmpi %compiler and spack load nalu %compiler, using
%gcc or %intel to specify which to load.

NREL’s Merlin Machine

The following describes how to build Nalu and its dependencies
mostly automatically on NREL’s Merlin machine using Spack.

Step 1

Login to Merlin, and checkout the https://github.com/NaluCFD/NaluSpack.git
repo (we will be cloning into the ${HOME} directory):

cd ${HOME} && git clone https://github.com/NaluCFD/NaluSpack.git

On Merlin, thankfully the login nodes and compute nodes use the same OS (centos7),
so building on the login node will still allow the package to be loaded on the compute node.
Spack will default to using all cores, so be mindful using it on a compute node. You should probably
build on a compute node, or set Spack to use a small number of processes when building.

Step 2

Checkout the official Spack repo from github:

cd ${HOME} && git clone https://github.com/LLNL/spack.git

Step 3

Configure your environment in the recommended way. You should purge all
modules and load GCCcore/4.9.2 in your login script. See the example
.bash_profile [https://github.com/NaluCFD/NaluSpack/blob/master/spack_config/machines/merlin/dot_bash_profile_merlin.sh]
. If you have problems building with Spack on
Merlin, it is most likely your environment has deviated from this
recommended one. Even when building with the Intel compiler in Spack,
this is the recommended environment.

module purge
module load GCCcore/4.9.2

Also add Spack shell support to your .bash_profile as shown in the example
.bash_profile [https://github.com/NaluCFD/NaluSpack/blob/master/spack_config/machines/merlin/dot_bash_profile_merlin.sh]
in the repo or the following lines:

export SPACK_ROOT=${HOME}/spack
source ${SPACK_ROOT}/share/spack/setup-env.sh

Log out and log back in or source your .bash_profile to get the Spack
shell support loaded.

Step 4

Configure Spack for Merlin. This is done by running the
setup_spack.sh [https://github.com/NaluCFD/NaluSpack/blob/master/spack_config/setup_spack.sh]
script provided which tries finding what machine you’re on and copying the corresponding *.yaml
file to your Spack directory:

cd ${HOME}/NaluSpack/spack_config && ./setup_spack.sh

Step 5

Try spack info nalu to see if Spack works.

Step 6

Note the build scripts provided here adhere to the official versions of the third party libraries
we test with, and that you may want to adhere to using them as well. Also note that
when you checkout the latest Spack, it also means you will be using the latest packages
available if you do not specify a package version at install time and the newest packages
may not have been tested to build correctly on NREL machines yet. So specifying
versions of the TPL dependencies in this step is recommended.

Install Nalu using a compute node either interactively
(qsub -V -I -l nodes=1:ppn=24,walltime=4:00:00 -A <allocation> -q batch)
or with the example batch script
install_nalu_gcc_merlin.sh [https://github.com/NaluCFD/NaluSpack/blob/master/install_scripts/install_nalu_gcc_merlin.sh]
by editing to use the correct allocation and then qsub install_nalu_gcc_merlin.sh.

That’s it! Hopefully that command installs the entire set of dependencies
and you get a working build of Nalu on Merlin.

To build with the Intel compiler, note the necessary commands in
install_nalu_intel_merlin.sh [https://github.com/NaluCFD/NaluSpack/blob/master/install_scripts/install_nalu_intel_merlin.sh]
batch script.

Then to load Nalu (and you will need Spack’s openmpi for Nalu now) into your path you
will need to spack load openmpi %compiler and spack load nalu %compiler, using
%gcc or %intel to specify which to load.

Development Build of Nalu

When building Nalu with Spack, Spack will cache downloaded archive files such as
*.tar.gz files. However, by default Spack will also erase extracted or
checked out (‘staged’) source files after it has built a package successfully.
Therefore if your build succeeds, Spack will have erased the Nalu source code
it checked out from Github.

The recommended way to get a version of Nalu you can develop in
is to checkout Nalu yourself outside of Spack and build this version
using the dependencies Spack has built for you. To do so, checkout Nalu:

git clone https://github.com/NaluCFD/Nalu.git

Next, create your own directory to build in, or use the existing build directory in Nalu to
run the CMake configuration. When running the CMake configuration, point Nalu to
the dependencies by using spack location -i <package>. For example in the
build directory run:

cmake -DTrilinos_DIR:PATH=$(spack location -i nalu-trilinos) \
 -DYAML_DIR:PATH=$(spack location -i yaml-cpp) \
 -DCMAKE_BUILD_TYPE=RELEASE \
 ..
make

There are also scripts available for this according to machine here [https://github.com/NaluCFD/NaluSpack/blob/master/spack_config]. This should allow you to have a build of Nalu in which you are able to continuosly modify the source code and rebuild.

Development Build of Trilinos

If you want to go even further into having a development build of Trilinos while
using TPLs Spack has built for you, checkout Trilinos somewhere and see the example configure
script for Trilinos according to machine here [https://github.com/NaluCFD/NaluSpack/blob/master/spack_config].

Building Nalu Manually

If you prefer not to build using Spack, below are instructions which describe the process of building Nalu by hand.

Linux and OSX

The instructions for Linux and OSX are mostly the same, except on each OS you may be able to use a package manager to install some dependencies for you. Using Homebrew on OSX is one option listed below. Compilers and MPI are expected to be already installed. If they are not, please follow the open-mpi build instructions. Below, we are using OpenMPI v1.10.4 and GCC v4.9.2. Start by create a $nalu_build_dir to work in.

Homebrew

If using OSX, you can install many dependencies using Homebrew. Install Homebrew [https://github.com/Homebrew/homebrew/wiki/Installation] on your local machine and reference the list below for some packages Homebrew can install for you which allows you to skip the steps describing the build process for each application, but not that you will need to find the location of the applications in which Homebrew has installed them, to use when building Trilinos and Nalu.

brew install openmpi
brew install cmake
brew install libxml2
brew install boost
brew tap homebrew/science
brew install superlu43

CMake v3.6.1

CMake is provided here [http://www.cmake.org/download/].

Prepare:

cd $nalu_build_dir/packages
curl -o cmake-3.6.1.tar.gz http://www.cmake.org/files/v3.6/cmake-3.6.1.tar.gz
tar xf cmake-3.6.1.tar.gz

Build:

cd $nalu_build_dir/packages/cmake-3.6.1
./configure --prefix=$nalu_build_dir/install
make
make install

SuperLU v4.3

SuperLU is provided here [http://crd-legacy.lbl.gov/~xiaoye/SuperLU/].

Prepare:

cd $nalu_build_dir/packages
curl -o superlu_4.3.tar.gz http://crd-legacy.lbl.gov/~xiaoye/SuperLU/superlu_4.3.tar.gz
tar xf superlu_4.3.tar.gz

Build:

cd $nalu_build_dir/packages/SuperLU_4.3
cp MAKE_INC/make.linux make.inc

To find out what the correct platform extension PLAT is:

uname -m

Edit make.inc as shown below (diffs shown from baseline).

PLAT = _x86_64
SuperLUroot = /your_path/install/SuperLU_4.3 i.e., $nalu_build_dir/install/SuperLU_4.3
BLASLIB = -L/usr/lib64 -lblas
CC = mpicc
FORTRAN = mpif77

On some platforms, the $nalu_build_dir may be mangled. In such cases, you may need to use the entire path to install/SuperLU_4.3.

Next, make some new directories:

mkdir $nalu_build_dir/install/SuperLU_4.3
mkdir $nalu_build_dir/install/SuperLU_4.3/lib
mkdir $nalu_build_dir/install/SuperLU_4.3/include
cd $nalu_build_dir/packages/SuperLU_4.3
make
cp SRC/*.h $nalu_build_dir/install/SuperLU_4.3/include

Libxml2 v2.9.2

Libxml2 is found here [http://www.xmlsoft.org/sources/].

Prepare:

cd $nalu_build_dir/packages
curl -o libxml2-2.9.2.tar.gz http://www.xmlsoft.org/sources/libxml2-2.9.2.tar.gz
tar -xvf libxml2-2.9.2.tar.gz

Build:

cd $nalu_build_dir/packages/libxml2-2.9.2
CC=mpicc CXX=mpicxx ./configure -without-python --prefix=$nalu_build_dir/install
make
make install

Boost v1.60.0

Boost is found here [http://www.boost.org].

Prepare:

cd $nalu_build_dir/packages
curl -o boost_1_60_0.tar.gz http://iweb.dl.sourceforge.net/project/boost/boost/1.60.0/boost_1_60_0.tar.gz
tar -zxvf boost_1_60_0.tar.gz

Build:

cd $nalu_build_dir/packages/boost_1_60_0
./bootstrap.sh --prefix=$nalu_build_dir/install --with-libraries=signals,regex,filesystem,system,mpi,serialization,thread,program_options,exception

Next, edit project-config.jam and add a ‘using mpi’, e.g,

using mpi: /path/to/mpi/openmpi/bin/mpicc

./b2 -j 4 2>&1 | tee boost_build_one
./b2 -j 4 install 2>&1 | tee boost_build_intall

YAML-CPP v0.5.3

YAML is provided here [https://github.com/jbeder/yaml-cpp]. Versions of Nalu before v1.1.0 used earlier versions of YAML-CPP. For brevity only the latest build instructions are discussed and the history of the Nalu git repo can be used to find older installation instructions if required.

Prepare:

cd $nalu_build_dir/packages
git clone https://github.com/jbeder/yaml-cpp

Build:

cd $nalu_build_dir/packages/yaml-cpp
mkdir build
cd build
cmake -DCMAKE_CXX_COMPILER=mpicxx -DCMAKE_CXX_FLAGS=-std=c++11 -DCMAKE_CC_COMPILER=mpicc -DCMAKE_INSTALL_PREFIX=$nalu_build_dir/install ..
make
make install

Zlib v1.2.8

Zlib is provided here [http://www.zlib.net].

Prepare:

cd $nalu_build_dir/packages
curl -o zlib-1.2.8.tar.gz http://zlib.net/zlib-1.2.8.tar.gz
tar -zxvf zlib-1.2.8.tar.gz

Build:

cd $nalu_build_dir/packages/zlib-1.2.8
CC=gcc CXX=g++ CFLAGS=-O3 CXXFLAGS=-O3 ./configure --prefix=$nalu_build_dir/install/
make
make install

HDF5 v1.8.16

HDF5 1.8.16 is provided here [http://www.hdfgroup.org/downloads/index.html].

Prepare:

cd $nalu_build_dir/packages/
curl -o hdf5-1.8.16.tar.gz http://www.hdfgroup.org/ftp/HDF5/releases/hdf5-1.8.16/src/hdf5-1.8.16.tar.gz
tar -zxvf hdf5-1.8.16.tar.gz

Build:

cd $nalu_build_dir/packages/hdf5-1.8.16
./configure CC=mpicc FC=mpif90 CXX=mpicxx CXXFLAGS="-fPIC -O3" CFLAGS="-fPIC -O3" FCFLAGS="-fPIC -O3" --enable-parallel --with-zlib=$nalu_build_dir/install --prefix=$nalu_build_dir/install
make
make install
make check

NetCDF v4.3.3.1 and Parallel NetCDF v1.6.1

In order to support all aspects of Nalu’s parallel models, this combination of products is required.

Parallel NetCDF v1.6.1

Parallel NetCDF is provided on the Argon Trac Page [https://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/Download].

Prepare:

cd $nalu_build_dir/packages/
tar -zxvf parallel-netcdf-1.6.1.tar.gz

Build:

cd parallel-netcdf-1.6.1
./configure --prefix=$nalu_install_dir CC=mpicc FC=mpif90 CXX=mpicxx CFLAGS="-I$nalu_install_dir/include -O3" LDFLAGS=-L$nalu_install_dir/lib --disable-fortran
make
make install

Note that we have created an install directory that might look like $nalu_build_dir/install.

NetCDF v4.3.3.1

NetCDF is provided here [https://github.com/Unidata/netcdf-c/releases].

Prepare:

cd $nalu_build_dir/packages/
curl -o netcdf-c-4.3.3.1.tar.gz https://codeload.github.com/Unidata/netcdf-c/tar.gz/v4.3.3.1
tar -zxvf netcdf-c-4.3.3.1.tar.gz

Build:

cd netcdf-c-4.3.3.1
./configure --prefix=$nalu_install_dir CC=mpicc FC=mpif90 CXX=mpicxx CFLAGS="-I$nalu_install_dir/include -O3" LDFLAGS=-L$nalu_install_dir/lib --enable-pnetcdf --enable-parallel-tests --enable-netcdf-4 --disable-shared --disable-fsync --disable-cdmremote --disable-dap --disable-doxygen --disable-v2
make -j 4
make check
make install

Trilinos

Trilinos is managed by the Trilinos [http://www.trilinos.org] project and can be found on Github.

Prepare:

cd $nalu_build_dir/packages/
git clone https://github.com/trilinos/Trilinos.git
cd $nalu_build_dir/packages/Trilinos
mkdir build

Build

Place into the build directory, one of the do-configTrilinos_* files, that can be obtained from the Nalu repo.

do-configTrilinos_* will be used to run cmake to build trilinos correctly for Nalu. Note that there are two files: one for ‘release’ and the other ‘debug’. The files can be found on the Nalu GitHub site or copied from $nalu_build_dir/packages/Nalu/build, which is created in the Nalu build step documented below. For example:

Pull latest version of do-configTrilinos_* from Nalu’s GitHub site:

curl -o $nalu_build_dir/packages/Trilinos/build/do-configTrilinos_release https://raw.githubusercontent.com/NaluCFD/Nalu/master/build/do-configTrilinos_release

Or if you create the Nalu directory as directed below, simply copy one of the do-configTrilinos_* files from local copy of Nalu’s git repository:

cp $nalu_build_dir/packages/Nalu/build/do-configTrilinos_release $nalu_build_dir/packages/Trilinos/build

Now edit do-configTrilinos_release to modify the paths so they point to $nalu_build_dir/install.

cd $nalu_build_dir/packages/Trilinos/build
chmod +x do-configTrilinos_release

Make sure all other paths to netcdf, hdf5, etc., are correct.

./do-configTrilinos_release
make
make install

ParaView Catalyst

Optionally enable ParaView Catalyst [https://www.paraview.org/in-situ/]
for in-situ visualization with Nalu. These instructions can be skipped if
you do not require in-situ visualization with Nalu.

Build ParaView SuperBuild v5.3.0

The ParaView SuperBuild [https://gitlab.kitware.com/paraview/paraview-superbuild]
builds ParaView along with all dependencies necessary to enable Catalyst with Nalu.
Clone the ParaView SuperBuild within $nalu_build_dir/packages:

cd $nalu_build_dir/packages/
git clone --recursive https://gitlab.kitware.com/paraview/paraview-superbuild.git
cd paraview-superbuild
git fetch origin
git checkout v5.3.0
git submodule update

Create a new build folder in $nalu_build_dir/:

cd $nalu_build_dir
mkdir paraview-superbuild-build
cd paraview-superbuild-build

Copy do-configParaViewSuperBuild to paraview-superbuild-build.
Edit do-configParaViewSuperBuild to modify the defined paths as
follows:

mpi_base_dir=<same MPI base directory used to build Trilinos>
nalu_build_dir=<path to root nalu build dir>

Make sure the MPI library names are correct.

./do-configParaViewSuperBuild
make -j 8

Build Nalu ParaView Catalyst Adapter

Create a new build folder in $nalu_build_dir/:

cd $nalu_build_dir
mkdir nalu-catalyst-adapter-build
cd nalu-catalyst-adapter-build

Copy do-configNaluCatalystAdapter to nalu-catalyst-adapter-build.
Edit do-configNaluCatalystAdapter and modify nalu_build_dir at the
top of the file to the root build directory path.

./do-configNaluCatalystAdapter
make
make install

Nalu

Nalu is provided here [https://github.com/NaluCFD/Nalu]. One may either build the released Nalu version 1.2.0 which matches with Trilinos version 12.12.1, or the master branch of Nalu which matches with the master branch or develop branch of Trilinos. If it is necessary to build an older version of Nalu, refer to the history of the Nalu git repo for instructions on doing so.

Prepare:

git clone https://github.com/NaluCFD/Nalu.git

Build

In Nalu/build, you will find the do-configNalu [https://github.com/NaluCFD/Nalu/blob/master/build/do-configNalu_release] script. Copy the do-configNalu_release or debug file to a new, non-tracked file:

cp do-configNalu_release do-configNaluNonTracked

Edit the paths at the top of the files by defining the nalu_build_dir variable. Within Nalu/build, execute the following commands:

./do-configNaluNonTracked
make

This process will create naluX within the Nalu/build location. You may also build a debug executable by modifying the Nalu config file to use “Debug”. In this case, a naluXd executable is created.

Build Nalu with ParaView Catalyst Enabled

If you have built ParaView Catalyst and the Nalu ParaView Catalyst Adapter, you
can build Nalu with Catalyst enabled.

In Nalu/build, find do-configNaluCatalyst. Copy do-configNaluCatalyst to
a new, non-tracked file:

cp do-configNaluCatalyst do-configNaluCatalystNonTracked
./do-configNaluCatalystNonTracked
make

The build will create the same executables as a regular Nalu build, and will also create a
bash shell script named naluXCatalyst. Use naluXCatalyst to run Nalu
with Catalyst enabled. It is also possible to run naluX with Catalyst enabled by
first setting the environment variable:

export CATALYST_ADAPTER_INSTALL_DIR=$nalu_build_dir/install

Nalu will render images to Catalyst in-situ if it encounters the keyword catalyst_file_name
in the output section of the Nalu input deck. The catalyst_file_name command specifies the
path to a text file containing ParaView Catalyst input deck commands. Consult the catalyst.txt files
in the following Nalu regression test directories for examples of the Catalyst input deck command syntax:

ablForcingEdge/
mixedTetPipe/
steadyTaylorVortex/

output:
 output_data_base_name: mixedTetPipe.e
 catalyst_file_name: catalyst.txt

When the above regression tests are run, Catalyst is run as part of the regression test. The regression
test checks that the correct number of image output files have been created by the test.

The Nalu Catalyst integration also supports running Catalyst Python script files exported from the ParaView GUI.
The procedure for exporting Catalyst Python scripts from ParaView is documented in the
Catalyst user guide [https://www.paraview.org/in-situ/]. To use an exported Catalyst script, insert
the paraview_script_name keyword in the output section of the Nalu input deck. The argument for
the paraview_script_name command contains a file path to the exported script.

output:
 output_data_base_name: mixedTetPipe.e
 paraview_script_name: paraview_exported_catalyst_script.py

Running Nalu

This section describes the general process of setting up and executing Nalu,
understanding the various input file options available to the user, and how to
extract results and analyze them. For the simplest case, Nalu requires the user
to provide a YAML input file with the options that control the run along with a
computational mesh in Exodus-II format. More complex setups might require
additional files:

	Trilinos MueLu preconditioner configuration in XML format

	ParaView Cataylst input file for in-situ visualizations

	Additional Exodus-II mesh files for solving different physics equation sets
on different meshes, or for solution transfer to an input/output mesh.

	Exodus-II File Format
	Examining Exodus-II Files

	Other Exodus-II Utilities

	Invoking Nalu - Command-line options

	Nalu Input File
	Linear Solvers

	Time Integration Options

	Physics Realm Options
	Common options

	Equation Systems

	Initial conditions

	Boundary Conditions
	Inflow Boundary Condition

	Open Boundary Condition

	Wall Boundary Condition

	Symmetry Boundary Condition

	Periodic Boundary Condition

	Non-Conformal Boundary

	Material Properties

	Output Options

	Restart Options

	Time-step Control Options

	Turbulence averaging

	Data probes

	Post-processing

	Transfers

	Simulations

Examples

Here we describe any examples we have for users to try running Nalu.

Tutorials

Here we describe any tutorials that may be further in-depth than examples.

Exodus-II File Format

Nalu requires the user to provide the computational mesh in Exodus-II [http://prod.sandia.gov/techlib/access-control.cgi/1992/922137.pdf] format.
The output and restart files generated by Nalu are also in Exodus-II format
where the requested fields are output along side the mesh. The restart files
from one Nalu simulation can serve as the input file for a subsequent
simulation.

Several commercial mesh generation software support output to Exodus-II format.
Two such software used by Nalu developers are:

	CUBIT [https://cubit.sandia.gov/public/13.2/help_manual/WebHelp/cubit_users_manual.html]

	Pointwise [http://www.pointwise.com]

Furthermore, NaluWindUtils [http://naluwindutils.readthedocs.io/en/latest/user/abl_mesh.html] provides an
abl_mesh utility that can be used to generate simple structured
meshes (output into Exodus-II format) for use with atmospheric boundary layer
simulations.

Examining Exodus-II Files

Exodus-II uses the NetCDF [http://www.unidata.ucar.edu/software/netcdf/]
format to store data, therefore, the several NetCDF utilities can be used to
examine the file metadata. For example, the following code snippet shows the use
of ncdump to examine the names of the mesh blocks and side sets, as
well as the nodal fields available in a given mesh file.

ncdump -v eb_names,ss_names,name_nod_var channel_coarse_ic.g
<output truncated to show only relevant parts>
data:

 eb_names =
 "interior" ;

 ss_names =
 "inlet",
 "outlet",
 "bottomwall",
 "topwall",
 "back",
 "front" ;

 name_nod_var =
 "turbulent_ke",
 "velocity_x",
 "velocity_y",
 "velocity_z" ;

For brevity, the example above has removed the NetCDF dimensions and
variables sections to show just the contents of the variable names of
interest. The output shows that the mesh in question contains one element block
(interior) with six boundary planes (side-sets) and has two nodal fields: the
velocity vector, and the turbulent kinetic energy scalar. ncdump can
be invoked with the -h flag to print just the headers. Of particular
interest is the NetCDF dimensions section that contains information about
the total number of nodes, element, boundary faces, etc. in the mesh file.

Most visualization programs support loading Exodus-II mesh/solution files and
can be used to visualize the flow fields generated by Nalu. Two open-source
visualization programs available are:

	ParaView [https://www.paraview.org]

	VisIt [https://wci.llnl.gov/simulation/computer-codes/visit/]

Preliminary support for in-situ visualization using ParaView Catalyst [https://www.paraview.org/in-situ/] is available within the Nalu code base and
can be enabled by linking to Catalyst libraries during compile time. See input
file specifications more details on setting up Cataylst for in-situ
visualization of Nalu solution files.

Other Exodus-II Utilities

A brief description of some useful Exodus-II utilities are provided here. Please
consult the documentation of these programs to understand the full range of
options available.

decomp

decomp is a SEACAS utility (available from a Trilinos install) that can
be used to decompose a mesh file acros several MPI ranks for use in a
subsequent paralell simulation.

epu

epu performs the reverse action of decomp, i.e., it combines parallel
decomposed files from a simulation into a single Exodus-II database. The
simplest invocation is

epu -auto nalu_output.e.8.0

The -auto flag determines the database structured based on the file
provided on the command line and combines the files (in the above example
into nalu_output.e).

mapvar-kd

Map solution fields from one mesh to another mesh.

percept

The Percept [https://github.com/PerceptTools/percept] project provides
various tools to perform mesh refinement, higher-order promotion, etc. See
documentation for mesh_adapt to determine various options available.

Invoking Nalu - Command-line options

Nalu’s runtime behavior can be controlled by using several command line input
options during invocation. Users can invoke -h to determine the
various options available.

	
-h, --help

	Print the help message describing all Nalu options and exit

	
-i, --input-deck

	Use the filename provided as the input file. If this option is not provided,
naluX will attempt to load a file called nalu.i in the
current working directory as the input file.

	
-o, --log-file

	The log file where the output generated by Nalu is directed to. If no file is
provided, then naluX will use the base name of the Nalu input file
with the extension .log as the output file. For example, if
naluX was invoked as naluX -i ABL.neutral.i then the output
will be redirected to a file named ABL.neutral.log. Note that the
file is overwritten if it already exists.

	
-v, --version

	Print the Nalu version string.

	
-p, --pprint

	Enable parallel printing from all MPI ranks.

	
-D, --debug

	Enable verbose debug printing to log file.

Nalu Input File

Nalu requires the user to provide an input file, in YAML format, during
invocation at the command line using the naluX -i flag. By default,
naluX will look for nalu.i in the current working directory
to determine the mesh file as well as the run setup for execution. A sample
nalu.i is shown below:

Listing 1 Sample Nalu input file for the Heat Conduction problem

-*- mode: yaml -*-
#
Example Nalu input file for a heat conduction problem
#

Simulations:
 - name: sim1
 time_integrator: ti_1
 optimizer: opt1

linear_solvers:
 - name: solve_scalar
 type: tpetra
 method: gmres
 preconditioner: sgs
 tolerance: 1e-3
 max_iterations: 75
 kspace: 75
 output_level: 0

realms:

 - name: realm_1
 mesh: periodic3d.g
 use_edges: no
 automatic_decomposition_type: rcb

 equation_systems:
 name: theEqSys
 max_iterations: 2

 solver_system_specification:
 temperature: solve_scalar

 systems:
 - HeatConduction:
 name: myHC
 max_iterations: 1
 convergence_tolerance: 1e-5

 initial_conditions:

 - constant: ic_1
 target_name: block_1
 value:
 temperature: 10.0

 material_properties:
 target_name: block_1
 specifications:
 - name: density
 type: constant
 value: 1.0
 - name: thermal_conductivity
 type: constant
 value: 1.0
 - name: specific_heat
 type: constant
 value: 1.0

 boundary_conditions:

 - wall_boundary_condition: bc_left
 target_name: surface_1
 wall_user_data:
 temperature: 20.0

 - wall_boundary_condition: bc_right
 target_name: surface_2
 wall_user_data:
 temperature: 40.0

 solution_options:
 name: myOptions

 use_consolidated_solver_algorithm: yes

 options:
 - element_source_terms:
 temperature: FEM_DIFF

 output:
 output_data_base_name: femHC.e
 output_frequency: 10
 output_node_set: no
 output_variables:
 - dual_nodal_volume
 - temperature

Time_Integrators:
 - StandardTimeIntegrator:
 name: ti_1
 start_time: 0
 termination_step_count: 25
 time_step: 10.0
 time_stepping_type: fixed
 time_step_count: 0
 second_order_accuracy: no

 realms:
 - realm_1

Nalu input file contains the following top-level sections that describe the
simulation to be executed.

Realms

Realms describe the computational domain (via mesh input files) and the set of
physics equations (Low-Mach Navier-Stokes, Heat Conduction, etc.) that are
solved over this particular domain. The list can contain multiple
computational domains (realms) that use different meshes as well as solve
different sets of physics equations and interact via solution transfer. This
section also contains information regarding the initial and boundary
conditions, solution output and restart options, the linear solvers used to
solve the linear system of equations, and solution options that govern the
discretization of the equation set.

A special case of a realm instance is the input-output realm; this realm type
does not solve any physics equations, but instead serves one of the following
purposes:

	provide time-varying boundary conditions to one or more boundaries within
one or more of the participating realms in the simulations. In this
context, it acts as an input realm.

	extract a subset of data for output at a different frequency from the
other realms. In this context, it acts as an output realm.

Inclusion of an input/output realm will require the user to provide the
additional transfers section in the Nalu input file that defines
the solution fields that are transferred between the realms. See
Physics Realm Options for detailed documentation on all Realm options.

Linear Solvers

This section configures the solvers and preconditioners used to solve the
resulting linear system of equations within Nalu. The linear system
convergence tolerance and other controls are set here and can be used with
multiple systems across different realms. See Linear Solvers
for more details.

Time Integrators

This section configures the time integration scheme used (first/second order
in time), the duration of simulation, fixed or adaptive timestepping based on
Courant number constraints, etc. Each time integration section in this list
can accept one or more realms that are integrated in time using
that specific time integration scheme. See Time Integration Options
for complete documentation of all time integration options available in Nalu.

Transfers

An optional section that defines one or more solution transfer definitions
between the participating realms during the simulation. Each
transfer definition provides a mapping of the to and from realm, part, and the
solution field that must be transferred at every timestep during the
simulation. See Transfers section for complete documentation of
all transfer options available in Nalu.

Simulations

Simulations provides the top-level architecture that orchestrates the
time-stepping across all the realms and the required equation sets.

Linear Solvers

The linear_solvers section contains a list of one or more linear solver
settings that specify the solver, preconditioner, convergence tolerance for
solving a linear system. Every entry in the YAML list will contain the following
entries:

Note

The variable in the linear_solvers subsection are prefixed with
linear_solvers.name but only the variable name after the period should
appear in the input file.

	
linear_solvers.name

	The key used to refer to the linear solver configuration in
equation_systems.solver_system_specification section.

	
linear_solvers.type

	The type of solver library used. Currently only one option (tpetra) is supported.

	
linear_solvers.method

	The solver used for solving the linear system. Valid options are: gmres,
biCgStab, cg.

	
linear_solvers.preconditioner

	The type of preconditioner used. Valid options are sgs, mt_sgs, muelu.

	
linear_solvers.tolerance

	The relative tolerance used to determine convergence of the linear system.

	
linear_solvers.max_iterations

	Maximum number of linear solver iterations performed.

	
linear_solvers.kspace

	The Krylov vector space.

	
linear_solvers.output_level

	Verbosity of output from the linear solver during execution.

	
linear_solvers.muelu_xml_file_name

	Only used when the linear_solvers.preconditioner is set to
muelu and specifies the path to the XML filename that contains various
configuration parameters for Trilinos MueLu package.

	
linear_solvers.write_matrix_files

	A boolean flag indicating whether the matrix, the right hand side, and the
solution vector are written to files during execution. The matrix files are
written in MatrixMarket format. The default value is no.

	
linear_solvers.recompute_preconditioner

	A boolean flag indicating whether preconditioner is recomputed during runs.
The default value is yes.

	
linear_solvers.reuse_preconditioner

	Boolean flag. Default value is no.

	
linear_solvers.summarize_muelu_timer

	Boolean flag indicating whether MueLu timer summary is printed. Default value
is no.

Time Integration Options

	
Time_Integrators

	A list of time-integration options used to advance the realms in
time. Each list entry must contain a YAML mapping with the key indicating the
type of time integrator. Currently only one option,
StandardTimeIntegrator is available.

Time_Integrators:
 - StandardTimeIntegrator:
 name: ti_1
 start_time: 0.0
 termination_step_count: 10
 time_step: 0.5
 time_stepping_type: fixed
 time_step_count: 0
 second_order_accuracy: yes

 realms:
 - fluids_realm

	
time_int.name

	The lookup key for this time integration entry. This name must match the one
provided in Simulations section.

	
time_int.termination_time

	Nalu will stop the simulation once the termination_time has reached.

	
time_int.termination_step_count

	Nalu will stop the simulation once the specified termination_step_count
timesteps have been completed. If both time_int.termination_time
and this parameter are provided then this parameter will prevail.

	
time_int.time_step

	The time step (\(\Delta t\)) used for the simulation. If
time_int.time_stepping_type is fixed this value does not
change during the simulation.

	
time_int.start_time

	The starting time step (default: 0.0) when starting a new simulation.
Note that this has no effect on restart which is controlled by
restart.restart_time in the restart section.

	
time_int.time_step_count

	The starting timestep counter for a new simulation. See restart
for restarting from a previous simulation.

	
time_int.second_order_accuracy

	A boolean flag indicating whether second-order time integration scheme is
activated. Default: no.

	
time_int.time_stepping_type

	One of fixed or adaptive indicating whether a fixed time-stepping
scheme or an adaptive timestepping scheme is used for simulations. See
time_step_control for more information on max Courant number based
adaptive time stepping.

	
time_int.realms

	A list of realms names. The names entered here must match
name used in the realms section. Names listed here not
found in realms list will trigger an error, while realms not
included in this list but present in realms will not be
initialized and silently ignored. This can cause the code to abort if the
user attempts to access the specific realm in the transfers
section.

Physics Realm Options

As mentioned previously, realms is a YAML list data structure
containing at least one Physics Realm Options entry that defines the
computational domain (provided as an Exodus-II mesh), the set of physics
equations that must be solved over this domain, along with the necessary initial
and boundary conditions. Each list entry is a YAML dictionary mapping that is
described in this section of the manual. The key subsections of a Realm entry
in the input file are

	Realm subsection
	Purpose

	equation_systems
	Set of physics equations to be solved

	initial_conditions
	Initial conditions for the various fields

	boundary_conditions
	Boundary condition for the different fields

	material_properties
	Material properties (e.g., fluid density, viscosity etc.)

	solution_options
	Discretization options

	output
	Solution output options (file, frequency, etc.)

	restart
	Optional: Restart options (restart time, checkpoint frequency etc.)

	time_step_control
	Optional: Parameters determining variable timestepping

In addition to the sections mentioned in the table, there are several additional
sections that could be present depending on the specific simulation type and
post-processing options requested by the user. A brief description of these
optional sections are provided below:

	Realm subsection
	Purpose

	turbulence_averaging
	Generate statistics for the flow field

	post_processing
	Extract integrated data from the simulation

	solution_norm
	Compare the solution error to a reference solution

	data_probes
	Extract data using probes

	actuator
	Model turbine blades/tower using actuator lines

	abl_forcing
	Pressure source term to drive ABL flows to a desired velocity profile

Common options

	
name

	The name of the realm. The name provided here is used in the
Time_Integrators section to determine the time-integration scheme
used for this computational domain.

	
mesh

	The name of the Exodus-II mesh file that defines the computational domain for
this realm. Note that only the base name (i.e., without the .NPROCS.IPROC
suffix) is provided even for simulations using previously decomposed
mesh/restart files.

	
automatic_decomposition_type

	Used only for parallel runs, this indicates how the a single mesh database
must be decomposed amongst the MPI processes during initialization. This
option should not be used if the mesh has already been decomposed by an
external utility. Possible values are:

	Value
	Description

	rcb
	recursive coordinate bisection

	rib
	recursive inertial bisection

	linear
	elements in order first n/p to proc 0, next to proc 1.

	cyclic
	elements handed out to id % proc_count

	
activate_aura

	A boolean flag indicating whether an extra element is ghosted across the
processor boundaries. The default value is no.

	
use_edges

	A boolean flag indicating whether edge based discretization scheme is used
instead of element based schemes. The default value is no.

	
polynomial_order

	An integer value indicating the polynomial order used for higher-order mesh
simulations. The default value is 1. When polynomial_order is
greater than 1, the Realm has the capability to promote the mesh to
higher-order during initialization.

	
solve_frequency

	An integer value indicating how often this realm is solved during time
integration. The default value is 1.

	
support_inconsistent_multi_state_restart

	A boolean flag indicating whether restarts are allowed from files where the
necessary field states are missing. A typical situation is when the
simulation is restarted using second-order time integration but the restart
file was created using first-order time integration scheme.

	
activate_memory_diagnostic

	A boolean flag indicating whether memory diagnostics are activated during
simulation. Default value is no.

	
balance_nodes

	A boolean flag indicating whether node balancing is performed during
simulations. See also balance_node_iterations and
balance_nodes_target.

	
balance_node_iterations

	The frequency at which node rebalancing is performed. Default value is 5.

	
balance_node_target

	The target balance ratio. Default value is 1.0.

Equation Systems

	
equation_systems

	equation_systems subsection defines the physics equation sets that are
solved for this realm and the linear solvers used to solve the different
linear systems.

Note

The variable in the equation_systems subsection are prefixed with
equation_systems.name but only the variable name after the period should
appear in the input file.

	
equation_systems.name

	A string indicating the name used in log messages etc.

	
equation_systems.max_iterations

	The maximum number of non-linear iterations performed during a timestep that
couples the different equation systems.

	
equation_systems.solver_system_specification

	A mapping containing field_name: linear_solver_name that determines the
linear solver used for solving the linear system. Example:

solver_system_specification:
 pressure: solve_continuity
 enthalpy: solve_scalar
 velocity: solve_scalar

The above example indicates that the linear systems for the enthalpy and
momentum (velocity) equations are solved by the linear solver corresponding
to the tag solve_scalar in the linear_systems entry, whereas
the continuity equation system (pressure Poisson solve) should be solved
using the linear solver definition corresponding to the tag
solve_continuity.

	
equation_systems.systems

	A list of equation systems to be solved within this realm. Each entry is a
YAML mapping with the key corresponding to a pre-defined equation system name
that contains additional parameters governing the solution of this equation
set. The predefined equation types are

	Equation system
	Description

	LowMachEOM
	Low-Mach Momentum and Continuity equations

	Enthalpy
	Energy equations

	ShearStressTransport
	\(k-\omega\) SST equation set

	TurbKineticEnergy
	TKE equation system

	MassFraction
	Mass Fraction

	MixtureFraction
	Mixture Fraction

	MeshDisplacement
	Arbitrary Mesh Displacement

An example of the equation system definition for ABL precursor simulations is
shown below:

Equation systems example for ABL precursor simulations
systems:
 - LowMachEOM:
 name: myLowMach
 max_iterations: 1
 convergence_tolerance: 1.0e-5
 - TurbKineticEnergy:
 name: myTke
 max_iterations: 1
 convergence_tolerance: 1.0e-2
 - Enthalpy:
 name: myEnth
 max_iterations: 1
 convergence_tolerance: 1.0e-2

Initial conditions

	
initial_conditions

	The initial_conditions sub-sections defines the conditions used to
initialize the computational fields if they are not provided via the mesh
file. Two types of field initializations are currently possible:

	constant - Initialize the field with a constant value throughout the domain;

	user_function - Initialize the field with a pre-defined user function.

The snippet below shows an example of both options available to initialize
the various computational fields used for ABL simulations. In this example,
the pressure and turbulent kinetic energy fields are initialized using a
constant value, whereas the velocity field is initialized by the user
function boundary_layer_perturbation that imposes sinusoidal fluctations
over a velocity field to trip the flow.

initial_conditions:
 - constant: ic_1
 target_name: [fluid_part]
 value:
 pressure: 0.0
 turbulent_ke: 0.1

 - user_function: ic_2
 target_name: [fluid_part]
 user_function_name:
 velocity: boundary_layer_perturbation
 user_function_parameters:
 velocity: [1.0,0.0075398,0.0075398,50.0,8.0]

	
initial_conditions.constant

	This input parameter serves two purposes: 1. it indicates the type
(constant), and 2. provides the custom name for this condition. In
addition to the initial_conditions.target_name this section
requires another entry value that contains the mapping of (field_name,
value) as shown in the above example.

	
initial_conditions.user_function

	Indicates that this block of YAML input must be parsed as input for a user
defined function.

	
initial_conditions.target_name

	A list of element blocks (parts) where this initial condition must be
applied.

Boundary Conditions

	
boundary_conditions

	This subsection of the physics Realm contains a list of boundary conditions
that must be used during the simulation. Each entry of this list is a YAML
mapping entry with the key of the form <type>_boundary_condition where
the available types are:

	inflow

	open – Outflow BC

	wall

	symmetry

	periodic

	non_conformal – e.g., BC across sliding mesh interfaces

	overset – overset mesh assembly description

All BC types require bc.target_name that contains a list of side sets
where the specified BC is to be applied. Additional information necessary for
certain BC types are provided by a sub-dictionary with the key
<type>_user_data: that contains the parameters necessary to initialize a
specific BC type.

	
bc.target_name

	A list of side set part names where the given BC type must be applied. If a
single string value is provided, it is converted to a list internally during
input file processing phase.

Inflow Boundary Condition

- inflow_boundary_condition: bc_inflow
 target_name: inlet
 inflow_user_data:
 velocity: [0.0,0.0,1.0]

Open Boundary Condition

- open_boundary_condition: bc_open
 target_name: outlet
 open_user_data:
 velocity: [0,0,0]
 pressure: 0.0

Wall Boundary Condition

	
bc.wall_user_data

	This subsection contains specifications as to whether wall models are used,
or how to treat the velocity at the wall when there is mesh motion.

The following code snippet shows an example of using an ABL wall function at the
terrain during ABL simulations. See ABL Wall Function for more
details on the actual implementation.

Wall boundary condition example for ABL terrain modeling
- wall_boundary_condition: bc_terrain
 target_name: terrain
 wall_user_data:
 velocity: [0,0,0]
 use_abl_wall_function: yes
 heat_flux: 0.0
 roughness_height: 0.2
 gravity_vector_component: 3
 reference_temperature: 300.0

When there is mesh motion involved the wall boundary must specify a user
function to determine relative velocity at the surface.

Wall boundary specification with mesh motion
- wall_boundary_condition: bc_cylinder
 target_name: cylinder_wall
 wall_user_data:
 user_function_name:
 velocity: wind_energy
 user_function_string_parameters:
 velocity: [cylinder]

The misnomer wind_energy is a pre-defined user function that provides the
correct velocity at the wall accounting for relative mesh motion with respect to
fluid and doesn’t specifically deal with any wind energy simulation. The
user_function_string_parameters contains a YAML mapping of fields, e.g.
velocity, to the list of names provided in the soln_opts.mesh_motion
entry in the solution_options section.

Example of wall boundary with a custom user function for temperature at the wall

- wall_boundary_condition: bc_6
 target_name: surface_6
 wall_user_data:
 user_function_name:
 temperature: steady_2d_thermal

Symmetry Boundary Condition

Requires no additional input other than bc.target_name.

- symmetry_boundary_condition: bc_top
 target_name: top
 symmetry_user_data:

Periodic Boundary Condition

Unlike the other BCs described so far, the parameter bc.target_name
behaves differently for the periodic BC. This parameter must be a list
containing exactly two entries: the boundary face pair where periodicity is
enforced. The nodes on these planes must coincide after translation in the
direction of periodicity. This BC also requires a periodic_user_data
section that specifies the search tolerance for locating node pairs.

	
periodic_user_data

	- periodic_boundary_condition: bc_east_west
 target_name: [east, west]
 periodic_user_data:
 search_tolerance: 0.0001

Non-Conformal Boundary

Like the periodic BC, the parameter bc.target_name must be a list
with exactly two entries that specify the boundary plane pair forming the
non-conformal boundary.

- non_conformal_boundary_condition: bc_left
 target_name: [surface_77, surface_7]
 non_conformal_user_data:
 expand_box_percentage: 10.0

Material Properties

	
material_properties

	The section provides the properties required for various physical quantities
during the simulation. A sample section used for simulating ABL flows is shown below

material_properties:
 target_name: [fluid_part]

 constant_specification:
 universal_gas_constant: 8314.4621
 reference_pressure: 101325.0

 reference_quantities:
 - species_name: Air
 mw: 29.0
 mass_fraction: 1.0

 specifications:
 - name: density
 type: constant
 value: 1.178037722969475
 - name: viscosity
 type: constant
 value: 1.6e-5
 - name: specific_heat
 type: constant
 value: 1000.0

	
material_properties.target_name

	A list of element blocks (parts) where the material properties are applied.
This list should ideally include all the parts that are referenced by
initial_conditions.target_name.

	
material_properties.constant_specification

	Values for several constants used during the simulation. Currently the
following properties are defined:

	Name
	Description

	universal_gas_constant
	Ideal gas constant \(R\)

	reference_temperature
	Reference temperature for simulations

	reference_pressure
	Reference pressure for simulations

	
material_properties.reference_quantities

	Provides material properties for the different species involved in the
simulation.

	Name
	Description

	species_name
	Name used to lookup properties

	mw
	Molecular weight

	mass_fraction
	Mass fraction

	primary_mass_fraction
	

	secondary_mass_fraction
	

	stoichiometry
	

	
material_properties.specifications

	A list of material properties with the following parameters

	
material_properties.specifications.name

	The name used for lookup, e.g., density, viscosity, etc.

	
material_properties.specifications.type

	The type can be one of the following

	Type
	Description

	constant
	Constant value property

	polynomial
	Property determined by a polynomial function

	ideal_gas_t
	Function of \(T_\mathrm{ref}\), \(P_\mathrm{ref}\), molecular weight

	ideal_gas_t_p
	Function of \(T_\mathrm{ref}\), pressure, molecular weight

	ideal_gas_yk
	

	hdf5table
	Lookup from an HDF5 table

	mixture_fraction
	Property determined by the mixture fraction

	geometric
	

	generic
	

Examples

	Specification for density as a function of temperature

specifications:
 - name: density
 type: ideal_gas_t

	Specification of viscosity as a function of temperature

- name: viscosity
 type: polynomial
 coefficient_declaration:
 - species_name: Air
 coefficients: [1.7894e-5, 273.11, 110.56]

The species_name must correspond to the entry in reference
quantitites to lookup
molecular weight information.

	Specification via hdf5table

material_properties:
 table_file_name: SLFM_CGauss_C2H4_ZMean_ZScaledVarianceMean_logChiMean.h5

 specifications:
 - name: density
 type: hdf5table
 independent_variable_set: [mixture_fraction, scalar_variance, scalar_dissipation]
 table_name_for_property: density
 table_name_for_independent_variable_set: [ZMean, ZScaledVarianceMean, ChiMean]
 aux_variables: temperature
 table_name_for_aux_variables: temperature

 - name: viscosity
 type: hdf5table
 independent_variable_set: [mixture_fraction, scalar_variance, scalar_dissipation]
 table_name_for_property: mu
 table_name_for_independent_variable_set: [ZMean, ZScaledVarianceMean, ChiMean]

	Specification via mixture_fraction

material_properties:
 target_name: block_1

 specifications:
 - name: density
 type: mixture_fraction
 primary_value: 0.163e-3
 secondary_value: 1.18e-3
 - name: viscosity
 type: mixture_fraction
 primary_value: 1.967e-4
 secondary_value: 1.85e-4

Output Options

	
output

	Specifies the frequency of output, the output database name, etc.

Example:

output:
 output_data_base_name: out/ABL.neutral.e
 output_frequency: 100
 output_node_set: no
 output_variables:
 - velocity
 - pressure
 - temperature

	
output.output_data_base_name

	The name of the output Exodus-II database. Can specify a directory relative
to the run directory, e.g., out/nalu_results.e. The directory will be
created automatically if one doesn’t exist. Default: output.e

	
output.output_frequency

	Nalu will write the output file every output_frequency timesteps. Note
that currently there is no option to output results at a specified simulation
time. Default: 1.

	
output.output_start

	Nalu will start writing output past the output_start timestep. Default: 0.

	
output.output_forced_wall_time

	Force output at a specified wall-clock time in seconds.

	
output.output_node_set

	Boolean flag indicating whether nodesets, if present, should be output to the
output file along with element blocks.

	
output.compression_level

	Integer value indicating the compression level used. Default: 0.

	
output.output_variables

	A list of field names to be output to the database. The field variables can
be node or element based quantities.

Restart Options

	
restart

	This section manages the restart for this realm object.

	
restart.restart_data_base_name

	The filename for restart. Like output, the filename can contain a
directory and it will be created if not already present.

	
restart.restart_time

	If this variable is present, it indicates that the current run will restart
from a previous simulation. This requires that the mesh be a
restart file with all the fields necessary for the equation sets defined in
the equation_systems.systems. Nalu will restart from the closest
time available in the mesh to restart_time. The timesteps
available in a restart file can be examined by looking at the time_whole
variable using the ncdump utility.

Note

The restart database used for restarting a simulation is the
mesh parameter. The restart_data_base_name parameter is used exclusively for
outputs.

	
restart.restart_frequency

	The frequency at which restart files are written to the disk. Default: 500 timesteps.

	
restart.restart_start

	Nalu will write a restart file after restart_start timesteps have elapsed.

	
restart.restart_forced_wall_time

	Force writing of restart file after specified wall-clock time in seconds.

	
restart.restart_node_set

	A boolean flag indicating whether nodesets are output to the restart database.

	
restart.max_data_base_step_size

	Default: 100,000.

	
restart.compression_level

	Compression level. Default: 0.

Time-step Control Options

	
time_step_control

	This optional section specifies the adpative time stepping parameters used if
time_int.time_stepping_type is set to adaptive.

time_step_control:
 target_courant: 2.0
 time_step_change_factor: 1.2

	
dtctrl.target_courant

	Maximum Courant number allowed during the simulation. Default: 1.0

	
dtctrl.time_step_change_factor

	Maximum allowable increase in dt over a given timestep.

Turbulence averaging

	
turbulence_averaging

	turbulence_averaging subsection defines the turbulence
post-processing quantities and averaging procedures. A sample
section is shown below

turbulence_averaging:
 time_filter_interval: 100000.0

 specifications:

 - name: turbulence_postprocessing
 target_name: interior
 reynolds_averaged_variables:
 - velocity

 favre_averaged_variables:
 - velocity
 - resolved_turbulent_ke

 compute_tke: yes
 compute_reynolds_stress: yes
 compute_q_criterion: yes
 compute_vorticity: yes
 compute_lambda_ci: yes

Note

The variable in the turbulence_averaging subsection are
prefixed with turbulence_averaging.name but only the variable
name after the period should appear in the input file.

	
turbulence_averaging.time_filter_interval

	Number indicating the time filter size over which calculate the
running average. The current implementation of the running average
in Nalu uses a “sawtooth” average. The running average is set to
zero each time the time filter width is reached and a new average
is calculated for the next time interval.

	
turbulence_averaging.specifications

	A list of turbulence postprocessing properties with the following parameters

	
turbulence_averaging.specifications.name

	The name used for lookup and logging.

	
turbulence_averaging.specifications.target_name

	A list of element blocks (parts) where the turbulence averaging is applied.

	
turbulence_averaging.specifications.reynolds_average_variables

	A list of field names to be averaged.

	
turbulence_averaging.specifications.favre_average_variables

	A list of field names to be Favre averaged.

	
turbulence_averaging.specifications.compute_tke

	A boolean flag indicating whether the turbulent kinetic energy is
computed. The default value is no.

	
turbulence_averaging.specifications.compute_reynolds_stress

	A boolean flag indicating whether the reynolds stress is
computed. The default value is no.

	
turbulence_averaging.specifications.compute_favre_stress

	A boolean flag indicating whether the Favre stress is computed. The
default value is no.

	
turbulence_averaging.specifications.compute_favre_tke

	A boolean flag indicating whether the Favre stress is computed. The
default value is no.

	
turbulence_averaging.specifications.compute_q_criterion

	A boolean flag indicating whether the q-criterion is computed. The
default value is no.

	
turbulence_averaging.specifications.compute_vorticity

	A boolean flag indicating whether the vorticity is computed. The
default value is no.

	
turbulence_averaging.specifications.compute_lambda_ci

	A boolean flag indicating whether the Lambda2 vorticity criterion
is computed. The default value is no.

Data probes

	
data_probes

	data_probes subsection defines the data probes. A sample
section is shown below

data_probes:

 output_frequency: 100

 search_method: stk_octree
 search_tolerance: 1.0e-3
 search_expansion_factor: 2.0

 specifications:
 - name: probe_bottomwall
 from_target_part: bottomwall

 line_of_site_specifications:
 - name: probe_bottomwall
 number_of_points: 100
 tip_coordinates: [-6.39, 0.0, 0.0]
 tail_coordinates: [4.0, 0.0, 0.0]

 output_variables:
 - field_name: tau_wall
 field_size: 1
 - field_name: pressure

 specifications:
 - name: probe_profile
 from_target_part: interior

 line_of_site_specifications:
 - name: probe_profile
 number_of_points: 100
 tip_coordinates: [0, 0.0, 0.0]
 tail_coordinates: [0.0, 0.0, 1.0]

 output_variables:
 - field_name: velocity
 field_size: 3
 - field_name: reynolds_stress
 field_size: 6

Note

The variable in the data_probes subsection are prefixed
with data_probes.name but only the variable name after the
period should appear in the input file.

	
data_probes.output_frequency

	Integer specifying the frequency of output.

	
data_probes.search_method

	String specifying the search method for finding nodes to transfer
field quantities to the data probe lineout.

	
data_probes.search_tolerance

	Number specifying the search tolerance for locating nodes.

	
data_probes.search_expansion_factor

	Number specifying the factor to use when expanding the node search.

	
data_probes.specifications

	A list of data probe properties with the following parameters

	
data_probes.specifications.name

	The name used for lookup and logging.

	
data_probes.specifications.from_target_part

	A list of element blocks (parts) where to do the data probing.

	
data_probes.specifications.line_of_site_specifications

	A list specifications defining the lineout

	Parameter
	Description

	name
	File name (without extension) for the data probe

	number_of_points
	Number of points along the lineout

	tip_coordinates
	List containing the coordinates for the start of the lineout

	tail_coordinates
	List containing the coordinates for the end of the lineout

	
data_probes.specifications.output_variables

	A list of field names (and field size) to be probed.

Post-processing

	
post_processing

	post_processing subsection defines the different
post-processign options. A sample section is shown below

post_processing:

- type: surface
 physics: surface_force_and_moment
 output_file_name: results/wallHump.dat
 frequency: 100
 parameters: [0,0]
 target_name: bottomwall

Note

The variable in the post_processing subsection are prefixed with
post_processing.name but only the variable name after the period should
appear in the input file.

	
post_processing.type

	Type of post-processing. Possible values are:

	Value
	Description

	surface
	Post-processing of surface quantities

	
post_processing.physics

	Physics to be post-processing. Possible values are:

	Value
	Description

	surface_force_and_moment
	Calculate surface forces and moments

	surface_force_and_moment_wall_function
	Calculate surface forces and moments when using a wall function

	
post_processing.output_file_name

	String specifying the output file name.

	
post_processing.frequency

	Integer specifying the frequency of output.

	
post_processing.parameters

	Parameters for the physics function. For the
surface_force_and_moment type functions, this is a
list specifying the centroid coordinates used in the moment
calculation.

	
post_processing.target_name

	A list of element blocks (parts) where to do the post-processing

Transfers

	
transfers

	Transfers section describes the search and mapping operations to be performed
between participating realms within a simulation.

Simulations

	
simulations

	This is the top-level section that orchestrates the entire execution of Nalu.

Developer Manual

	Testing Nalu
	Running Tests Locally

	Adding Tests to Nalu

	Adding Testing Machines to CDash

	Source Code Documentation
	Simulation – Nalu Top-level Interface

	Equation Systems

	CVFEM and FEM Interface

	Auxiliary Functions

	Post-Processing Utilities

	How to Document Source Code

	How to Write User Documentation

	Building the Documentation
	Install the Tools

	Run CMake Configure

	Make the Docs

	Developer Workflow Best Practices

	Code Style Guide

	Contributing

Testing Nalu

Nalu’s regression tests and unit tests are run nightly using the GCC and Intel
compilers against the Trilinos master and development branches on a machine
at NREL. The results can be seen at the CDash Nalu website [http://my.cdash.org/index.php?project=Nalu].

Running Tests Locally

The nightly tests are implemented using CTest [https://cmake.org/cmake/help/v3.7/manual/ctest.1.html] and
these same tests are available to developers to run locally as well. Due to the nature of error propagation of
calculations in computers, results of regression testing can be difficult to keep consistent.
Output from Nalu can vary from established reference data for the regression tests based on the compiler you
are using, the types of optimizations set, and the versions of the third-party libraries Nalu
utilizes, along with the blas/lapack implementation in use. Therefore it may make sense when
you checkout Nalu to create your own reference data for the tests for the machine and
configuration you are using, which is described later in this document. Or you can use a lower tolerance
when running the tests. At the moment, a single tolerance is chosen in which to use for all the tests.
The following instructions will describe how to run Nalu’s tests.

Since Nalu’s tests require a large amount of data (meshes), this data is hosted in a separate repository
from Nalu. This mesh repo is set as a submodule in the reg_tests/mesh directory in the main
Nalu repository. Submodule repos are not checked out by default, so either use git submodule init
and then git submodule update to clone it in your checkout of Nalu, or when you first clone Nalu you can also use
git clone --recursive <repo_url> to checkout all submodules as well.

Once this submodule is intialized and cloned, you will need to configure Nalu with testing on.
To configure Nalu with testing enabled, in Nalu’s existing build directory, we will run this command:

cmake -DTrilinos_DIR:PATH=`spack location -i nalu-trilinos` \
 -DYAML_DIR:PATH=`spack location -i yaml-cpp` \
 -DENABLE_TESTS:BOOL=ON \
 ..

Note we have chosen to originally build Nalu with Spack in this case, hence the use
of spack location -i <package> to locate our Yaml and Trilinos installations.
Then we use -DENABLE_TESTS:BOOL=ON to enable CTest. Once Nalu is configured,
you should be able to run the tests by building Nalu in the build directory,
and running make test or ctest. Looking at ctest -h will show you many ways
you can run tests and choose which tests to run.

There are advantages to using CTest, such as being able to run subsets of the tests, or tests
matching a particular regular expression for example. To do so, in the build directory, you can run
ctest -R femHC to run the test matching the femHC regular expression. Other useful capabilities are
ctest --output-on-failure to see test outputs when they fail, ctest --rerun-failed to only run
the tests that previously failed, ctest --print-labels to see the test labels, and ctest -L unit
to run the tests with label ‘unit’ for example. All testing related log files and output can be seen in
Nalu/build/Testing/Temporary and Nalu/build/reg_tests after the test have been run.

To define your own tolerance for tests, at configure time, add -DTEST_TOLERANCE=0.0001 for example
to the Nalu CMake configure line.

Updating Reference Data for Your Machine

When running the tests, the norms for each test are the output and they are ‘diffed’ against
the ‘gold’ norms that we have established for each test. To dictate whether or not a test passes,
we use a chosen tolerance in which we allow the results to deviate from the ‘gold’ norm. As stated
earlier, these ‘gold’ norms are not able to reflect every configuration of Nalu, per compiler, optimization,
TPL versions, blas/lapack version, etc. This tolerance is currently defined in the CMakeLists.txt
in Nalu’s reg_tests directory. This tolerance can also be passed into Nalu at configure time using
-DTEST_TOLERANCE=0.0000001 for example. To update the ‘gold’ norms locally to your configuration, merely
run the tests once, and copy the *.norm files in the build/reg_tests/test_files directory
to the corresponding test location in reg_tests/test_files while overwriting the current ‘gold’ norms.

In regards to ‘official’ gold norms, Linux with GCC 4.9.2, netlib-blas/lapack, and the following
TPL versions are officially tested:

openmpi@1.10.4
boost@1.60.0
cmake@3.6.1
parallel-netcdf@1.6.1
yaml-cpp@0.5.3
hdf5@1.8.16
netcdf@4.3.3.1
zlib@1.2.11
superlu@4.3

Adding Tests to Nalu

The testing infrastructure is almost completely confined to the reg_tests directory. To add a test
to Nalu, we need to add the test name, and create a test directory to place the input files and gold norms
for the test. First, the test itself can be added to the list of CTest tests by adding a line to the
CTestList.cmake file. For a single regression test, provided it is similar to the categories shown at
the top of the CTestList.cmake file, it can likely be added with a single line using the test
name and amount of processes you would like to run the test with and choosing the correct function to use.
For example:

add_test_r(mytest 6)

After this has been done, in the reg_tests/test_files directory, you should add a directory corresponding to your
test name and include the input file, mytest.i, and reference output file mytest.norm.gold. If you are using
an xml file that doesn’t exist in the xml directory, you will need to commit that as well.

To see commands used when running the tests, see the functions at the top of the CTestList.cmake file. These
functions ultimately create CTestTestFile.cmake files in the CMake build directory at configure time.
You can see the exact commands used for each test after configure in the
build/reg_tests/CTestTestFile.cmake file.

Note if your test doesn’t conform to an existing archetype, a new function in CTestList.cmake may need to be
created. Also, if you are using a mesh file that doesn’t exist in the mesh repo, you will need to add it, and
update the submodule in the Nalu main repo to use the latest commit of the mesh submodule repo.

Adding Testing Machines to CDash

To add a testing machine that will post results to CDash first means that you should have all software
dependencies satisified for Nalu. Next the script located at
CTestNightlyScript.cmake [https://github.com/NaluCFD/Nalu/blob/master/reg_tests/CTestNightlyScript.cmake]
can be run for example as:

ctest \
 -DNIGHTLY_DIR=${NALU_TESTING_DIR} \
 -DYAML_DIR=${YAML_INSTALL_DIR} \
 -DTRILINOS_DIR=${TRILINOS_INSTALL_DIR} \
 -DHOST_NAME=machine.domain.com \
 -DEXTRA_BUILD_NAME=Linux-gcc-whatever \
 -VV -S ${NALU_DIR}/reg_tests/CTestNightlyScript.cmake

In this case ${NALU_TESTING_DIR} is one directory above where the Nalu repo has been checked out.
This runs CTest in scripting mode with verbosity on and it will update the Nalu repo with the latest
revisions, configure, build, test, and finally submit results to the CDash site. Since CTest does
the building, it needs to know the locations of Yaml and Trilinos. For examples of nightly testing,
refer to the testing scripts currently being run
here [https://github.com/NaluCFD/NaluSpack/tree/master/test_scripts].

Source Code Documentation

The source documentation is extracted from the C++ files using Doxygen.

	Simulation – Nalu Top-level Interface
	Realms

	Time Integration

	Linear Solver Interface

	Transfers

	Equation Systems

	CVFEM and FEM Interface
	3-D Topologies

	2-D Topologies

	Higher-order Element Topologies

	Auxiliary Functions
	ABL Utilities

	Steady Taylor Vortex

	Convecting Taylor Vortex

	Kovasznay 2-D Flow

	Steady Thermal MMS (2-D and 3-D)

	Mesh Motion/Displacement Utilities

	Post-Processing Utilities

Simulation – Nalu Top-level Interface

	
class sierra::nalu::Simulation

	

Realms

Realm is a Nalu abstraction of a set of equations that are solved on a
computational domain, reresented by an Exodus-II mesh. A simulation can contain
multiple Realms and that can interact via sierra::nalu::Transfer
instance. InputOutputRealm is a special type of Realm
that exists solely to provide data (input) or extract a subset of data from
another Realm.

	
class sierra::nalu::Realm

	Representation of a computational domain and physics equations solved on this domain.

Subclassed by sierra::nalu::InputOutputRealm

Public Functions

	
void check_job(bool get_node_count)

	check job for fitting in memory

	
class sierra::nalu::InputOutputRealm

	Inherits from sierra::nalu::Realm

	
class sierra::nalu::Realms

	

Time Integration

	
class sierra::nalu::TimeIntegrator

	

Linear Solver Interface

	
class sierra::nalu::LinearSystem

	Subclassed by sierra::nalu::TpetraLinearSystem

Public Functions

	
virtual void resetRows(std::vector<stk::mesh::Entity> nodeList, const unsigned beginPos, const unsigned endPos) = 0

	Reset LHS and RHS for the given set of nodes to 0.

	Parameters

	
	nodeList: A list of STK node entities whose rows are zeroed out

	beginPos: Starting index (usually 0)

	endPos: Terminating index (1 for scalar quantities; nDim for vectors)

	
class sierra::nalu::LinearSolver

	Subclassed by sierra::nalu::TpetraLinearSolver

	
class sierra::nalu::TpetraLinearSystem

	Inherits from sierra::nalu::LinearSystem

Public Functions

	
virtual void resetRows(const std::vector<stk::mesh::Entity> nodeList, const unsigned beginPos, const unsigned endPos)

	Reset LHS and RHS for the given set of nodes to 0.

	Parameters

	
	nodeList: A list of STK node entities whose rows are zeroed out

	beginPos: Starting index (usually 0)

	endPos: Terminating index (1 for scalar quantities; nDim for vectors)

Transfers

	
class sierra::nalu::Transfer

	

	
class sierra::nalu::Transfers

	

Equation Systems

	
class sierra::nalu::EquationSystem

	Base class representation of a PDE.

EquationSystem defines the API supported by all concrete implementations of PDEs for performing the following actions:

	Register computational fields

	Register computational algorithms for interior domain and boundary conditions

	Manage solve and update of the PDE for a given timestep

Subclassed by sierra::nalu::ContinuityEquationSystem, sierra::nalu::EnthalpyEquationSystem, sierra::nalu::HeatCondEquationSystem, sierra::nalu::LowMachEquationSystem, sierra::nalu::MassFractionEquationSystem, sierra::nalu::MeshDisplacementEquationSystem, sierra::nalu::MixtureFractionEquationSystem, sierra::nalu::MomentumEquationSystem, sierra::nalu::ProjectedNodalGradientEquationSystem, sierra::nalu::RadiativeTransportEquationSystem, sierra::nalu::ShearStressTransportEquationSystem, sierra::nalu::SpecificDissipationRateEquationSystem, sierra::nalu::TurbKineticEnergyEquationSystem

Public Functions

	
virtual void solve_and_update()

	Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {
 eqsys->pre_iter_work();
 eqsys->solve_and_update(); //<<<< Assemble and solve system
 eqsys->post_iter_work();
}
post_iter_work();

	See

	EquationSystems::solve_and_update

	
virtual void pre_iter_work()

	Perform setup tasks before entering the solve and update step.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {
 eqsys->pre_iter_work(); //<<<< Pre-iteration setup
 eqsys->solve_and_update();
 eqsys->post_iter_work();
}
post_iter_work();

	See

	EquationSystems::solve_and_update

	
virtual void post_iter_work()

	Perform setup tasks after he solve and update step.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {
 eqsys->pre_iter_work();
 eqsys->solve_and_update();
 eqsys->post_iter_work(); //<<<< Post-iteration actions
}
post_iter_work();

	See

	EquationSystems::solve_and_update

	
virtual void post_iter_work_dep()

	Deprecated post iteration work logic.

Public Members

	
std::vector<AlgorithmDriver *> preIterAlgDriver_

	List of tasks to be performed before each EquationSystem::solve_and_update.

	
std::vector<AlgorithmDriver *> postIterAlgDriver_

	List of tasks to be performed after each EquationSystem::solve_and_update.

	
class sierra::nalu::LowMachEquationSystem

	Low-Mach formulation of the Navier-Stokes Equations.

This class is a thin-wrapper around sierra::nalu::ContinuityEquationSystem and sierra::nalu::MomentumEquationSystem that orchestrates the interactions between the velocity and the pressure Possion solves in the LowMachEquationSystem::solve_and_update method.

Inherits from sierra::nalu::EquationSystem

Public Functions

	
virtual void pre_iter_work()

	Perform setup tasks before entering the solve and update step.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {
 eqsys->pre_iter_work(); //<<<< Pre-iteration setup
 eqsys->solve_and_update();
 eqsys->post_iter_work();
}
post_iter_work();

	See

	EquationSystems::solve_and_update

	
virtual void solve_and_update()

	Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {
 eqsys->pre_iter_work();
 eqsys->solve_and_update(); //<<<< Assemble and solve system
 eqsys->post_iter_work();
}
post_iter_work();

	See

	EquationSystems::solve_and_update

	
class sierra::nalu::EnthalpyEquationSystem

	Inherits from sierra::nalu::EquationSystem

Public Functions

	
void solve_and_update()

	Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {
 eqsys->pre_iter_work();
 eqsys->solve_and_update(); //<<<< Assemble and solve system
 eqsys->post_iter_work();
}
post_iter_work();

	See

	EquationSystems::solve_and_update

	
void post_iter_work_dep()

	Deprecated post iteration work logic.

	
class sierra::nalu::TurbKineticEnergyEquationSystem

	Inherits from sierra::nalu::EquationSystem

Public Functions

	
void solve_and_update()

	Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {
 eqsys->pre_iter_work();
 eqsys->solve_and_update(); //<<<< Assemble and solve system
 eqsys->post_iter_work();
}
post_iter_work();

	See

	EquationSystems::solve_and_update

	
class sierra::nalu::ShearStressTransportEquationSystem

	Inherits from sierra::nalu::EquationSystem

Public Functions

	
virtual void solve_and_update()

	Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {
 eqsys->pre_iter_work();
 eqsys->solve_and_update(); //<<<< Assemble and solve system
 eqsys->post_iter_work();
}
post_iter_work();

	See

	EquationSystems::solve_and_update

	
class sierra::nalu::HeatCondEquationSystem

	Inherits from sierra::nalu::EquationSystem

Public Functions

	
void solve_and_update()

	Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {
 eqsys->pre_iter_work();
 eqsys->solve_and_update(); //<<<< Assemble and solve system
 eqsys->post_iter_work();
}
post_iter_work();

	See

	EquationSystems::solve_and_update

	
class sierra::nalu::MassFractionEquationSystem

	Inherits from sierra::nalu::EquationSystem

Public Functions

	
void solve_and_update()

	Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {
 eqsys->pre_iter_work();
 eqsys->solve_and_update(); //<<<< Assemble and solve system
 eqsys->post_iter_work();
}
post_iter_work();

	See

	EquationSystems::solve_and_update

	
class sierra::nalu::MixtureFractionEquationSystem

	Inherits from sierra::nalu::EquationSystem

Public Functions

	
void solve_and_update()

	Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {
 eqsys->pre_iter_work();
 eqsys->solve_and_update(); //<<<< Assemble and solve system
 eqsys->post_iter_work();
}
post_iter_work();

	See

	EquationSystems::solve_and_update

	
class sierra::nalu::MomentumEquationSystem

	Representation of the Momentum conservation equations in 2-D and 3-D.

Inherits from sierra::nalu::EquationSystem

	
class sierra::nalu::ContinuityEquationSystem

	Inherits from sierra::nalu::EquationSystem

	
class sierra::nalu::SpecificDissipationRateEquationSystem

	Inherits from sierra::nalu::EquationSystem

	
class sierra::nalu::ProjectedNodalGradientEquationSystem

	Inherits from sierra::nalu::EquationSystem

Public Functions

	
void solve_and_update()

	Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {
 eqsys->pre_iter_work();
 eqsys->solve_and_update(); //<<<< Assemble and solve system
 eqsys->post_iter_work();
}
post_iter_work();

	See

	EquationSystems::solve_and_update

	
class sierra::nalu::EquationSystems

	A collection of Equations to be solved on a Realm.

EquationSystems holds a vector of EquationSystem instances representing the equations that are being solved in a given Realm and is responsible for the management of the solve and update of the various field quantities in a given timestep.

	See

	EquationSystems::solve_and_update

Public Functions

	
bool solve_and_update()

	Solve and update the state of all variables for a given timestep.

This method is responsible for executing setup actions before calling solve, performing the actual solve, updating the solution, and performing post-solve actions after the solution has been updated. To provide sufficient granularity and control of this pre- and post- solve actions, the solve method uses the following series of steps:

// Perform tasks for this timestep before any Equation system is called
pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {
 eqsys->pre_iter_work();
 eqsys->solve_and_update();
 eqsys->post_iter_work();
}
// Perform tasks after all equation systems have updated
post_iter_work();

Tasks that require to be performed before any equation system is solved for needs to be registered to preIterAlgDriver_ on EquationSystems, similiary for post-solve tasks. And actions to be performed immediately before individual equation system solves need to be registered in EquationSystem::preIterAlgDriver_.

	See

	pre_iter_work(), post_iter_work(), EquationSystem::pre_iter_work(),

	See

	EquationSystem::post_iter_work()

	
void pre_iter_work()

	Perform necessary setup tasks that affect all EquationSystem instances at a given timestep.

	See

	EquationSystems::solve_and_update()

	
void post_iter_work()

	Perform necessary actions once all EquationSystem instances have been updated for the prescribed number of outer iterations at a given timestep.

	See

	EquationSystems::solve_and_update()

Public Members

	
std::vector<AlgorithmDriver *> preIterAlgDriver_

	A list of tasks to be performed before all EquationSystem::solve_and_update.

	
std::vector<AlgorithmDriver *> postIterAlgDriver_

	A list of tasks to be performed after all EquationSystem::solve_and_update.

CVFEM and FEM Interface

	
class sierra::nalu::MasterElement

	Subclassed by sierra::nalu::Edge2DSCS, sierra::nalu::Hex8FEM, sierra::nalu::HexahedralP2Element, sierra::nalu::HexSCS, sierra::nalu::HexSCV, sierra::nalu::HigherOrderEdge2DSCS, sierra::nalu::HigherOrderHexSCS, sierra::nalu::HigherOrderHexSCV, sierra::nalu::HigherOrderQuad2DSCS, sierra::nalu::HigherOrderQuad2DSCV, sierra::nalu::HigherOrderQuad3DSCS, sierra::nalu::PyrSCS, sierra::nalu::PyrSCV, sierra::nalu::Quad3DSCS, sierra::nalu::Quad42DSCS, sierra::nalu::Quad42DSCV, sierra::nalu::QuadrilateralP2Element, sierra::nalu::TetSCS, sierra::nalu::TetSCV, sierra::nalu::Tri2DSCV, sierra::nalu::Tri32DSCS, sierra::nalu::Tri32DSCV, sierra::nalu::Tri3DSCS, sierra::nalu::WedSCS, sierra::nalu::WedSCV

3-D Topologies

	
class sierra::nalu::HexSCV

	Inherits from sierra::nalu::MasterElement

	
class sierra::nalu::HexSCS

	Inherits from sierra::nalu::MasterElement

	
class sierra::nalu::TetSCV

	Inherits from sierra::nalu::MasterElement

	
class sierra::nalu::TetSCS

	Inherits from sierra::nalu::MasterElement

	
class sierra::nalu::PyrSCV

	Inherits from sierra::nalu::MasterElement

	
class sierra::nalu::PyrSCS

	Inherits from sierra::nalu::MasterElement

	
class sierra::nalu::WedSCV

	Inherits from sierra::nalu::MasterElement

	
class sierra::nalu::WedSCS

	Inherits from sierra::nalu::MasterElement

	
class sierra::nalu::Hex27SCV

	Inherits from sierra::nalu::HexahedralP2Element

	
class sierra::nalu::Hex27SCS

	Inherits from sierra::nalu::HexahedralP2Element

	
class sierra::nalu::Hex8FEM

	Inherits from sierra::nalu::MasterElement

	
class sierra::nalu::Quad3DSCS

	Inherits from sierra::nalu::MasterElement

	
class sierra::nalu::Quad93DSCS

	Inherits from sierra::nalu::HexahedralP2Element

	
class sierra::nalu::Tri3DSCS

	Inherits from sierra::nalu::MasterElement

2-D Topologies

	
class sierra::nalu::Quad42DSCV

	Inherits from sierra::nalu::MasterElement

	
class sierra::nalu::Quad42DSCS

	Inherits from sierra::nalu::MasterElement

	
class sierra::nalu::Tri32DSCV

	Inherits from sierra::nalu::MasterElement

	
class sierra::nalu::Tri32DSCS

	Inherits from sierra::nalu::MasterElement

Higher-order Element Topologies

	
class sierra::nalu::HigherOrderHexSCV

	Inherits from sierra::nalu::MasterElement

	
class sierra::nalu::HigherOrderHexSCS

	Inherits from sierra::nalu::MasterElement

	
class sierra::nalu::HigherOrderQuad2DSCV

	Inherits from sierra::nalu::MasterElement

	
class sierra::nalu::HigherOrderQuad2DSCS

	Inherits from sierra::nalu::MasterElement

Auxiliary Functions

	
class sierra::nalu::AuxFunction

	Subclassed by sierra::nalu::BoundaryLayerPerturbationAuxFunction, sierra::nalu::ConstantAuxFunction, sierra::nalu::ConvectingTaylorVortexPressureAuxFunction, sierra::nalu::ConvectingTaylorVortexPressureGradAuxFunction, sierra::nalu::ConvectingTaylorVortexVelocityAuxFunction, sierra::nalu::FlowPastCylinderTempAuxFunction, sierra::nalu::KovasznayPressureAuxFunction, sierra::nalu::KovasznayPressureGradientAuxFunction, sierra::nalu::KovasznayVelocityAuxFunction, sierra::nalu::LinearRampMeshDisplacementAuxFunction, sierra::nalu::RayleighTaylorMixFracAuxFunction, sierra::nalu::SinMeshDisplacementAuxFunction, sierra::nalu::SinProfileChannelFlowVelocityAuxFunction, sierra::nalu::SteadyTaylorVortexGradPressureAuxFunction, sierra::nalu::SteadyTaylorVortexPressureAuxFunction, sierra::nalu::SteadyTaylorVortexVelocityAuxFunction, sierra::nalu::SteadyThermal3dContactAuxFunction, sierra::nalu::SteadyThermal3dContactDtDxAuxFunction, sierra::nalu::SteadyThermalContactAuxFunction, sierra::nalu::TaylorGreenPressureAuxFunction, sierra::nalu::TaylorGreenVelocityAuxFunction, sierra::nalu::TornadoAuxFunction, sierra::nalu::VariableDensityMixFracAuxFunction, sierra::nalu::VariableDensityNonIsoTemperatureAuxFunction, sierra::nalu::VariableDensityPressureAuxFunction, sierra::nalu::VariableDensityVelocityAuxFunction, sierra::nalu::WindEnergyAuxFunction, sierra::nalu::WindEnergyTaylorVortexAuxFunction, sierra::nalu::WindEnergyTaylorVortexPressureAuxFunction, sierra::nalu::WindEnergyTaylorVortexPressureGradAuxFunction

ABL Utilities

	
class sierra::nalu::BoundaryLayerPerturbationAuxFunction

	Add sinusoidal perturbations to the velocity field.

This function is used as an initial condition, primarily in Atmospheric Boundary Layer (ABL) flows, to trigger transition to turbulent flow during ABL precursor simulations.

Inherits from sierra::nalu::AuxFunction

Steady Taylor Vortex

	
class sierra::nalu::SteadyTaylorVortexVelocityAuxFunction

	Inherits from sierra::nalu::AuxFunction

	
class sierra::nalu::SteadyTaylorVortexPressureAuxFunction

	Inherits from sierra::nalu::AuxFunction

	
class sierra::nalu::SteadyTaylorVortexGradPressureAuxFunction

	Inherits from sierra::nalu::AuxFunction

	
class sierra::nalu::SteadyTaylorVortexMomentumSrcElemSuppAlg

	Inherits from sierra::nalu::SupplementalAlgorithm

	
class sierra::nalu::SteadyTaylorVortexMomentumSrcNodeSuppAlg

	Inherits from sierra::nalu::SupplementalAlgorithm

Convecting Taylor Vortex

	
class sierra::nalu::ConvectingTaylorVortexVelocityAuxFunction

	Inherits from sierra::nalu::AuxFunction

	
class sierra::nalu::ConvectingTaylorVortexPressureAuxFunction

	Inherits from sierra::nalu::AuxFunction

	
class sierra::nalu::ConvectingTaylorVortexPressureGradAuxFunction

	Inherits from sierra::nalu::AuxFunction

Kovasznay 2-D Flow

	
class sierra::nalu::KovasznayVelocityAuxFunction

	Inherits from sierra::nalu::AuxFunction

	
class sierra::nalu::KovasznayPressureAuxFunction

	Inherits from sierra::nalu::AuxFunction

	
class sierra::nalu::KovasznayPressureGradientAuxFunction

	Inherits from sierra::nalu::AuxFunction

Steady Thermal MMS (2-D and 3-D)

	
class sierra::nalu::SteadyThermal3dContactAuxFunction

	Inherits from sierra::nalu::AuxFunction

	
class sierra::nalu::SteadyThermal3dContactDtDxAuxFunction

	Inherits from sierra::nalu::AuxFunction

	
template <typename AlgTraits>

	
class sierra::nalu::SteadyThermal3dContactSrcElemKernel

	Inherits from sierra::nalu::Kernel

Public Functions

	
virtual void execute(SharedMemView<DoubleType **>&, SharedMemView<DoubleType *>&, ScratchViews<DoubleType>&)

	Execute the kernel within a Kokkos loop and populate the LHS and RHS for the linear solve.

	
class sierra::nalu::SteadyThermal3dContactSrcElemSuppAlgDep

	Inherits from sierra::nalu::SupplementalAlgorithm

	
class sierra::nalu::SteadyThermalContact3DSrcNodeSuppAlg

	Inherits from sierra::nalu::SupplementalAlgorithm

	
class sierra::nalu::SteadyThermalContactAuxFunction

	Inherits from sierra::nalu::AuxFunction

	
class sierra::nalu::SteadyThermalContactSrcElemSuppAlg

	Inherits from sierra::nalu::SupplementalAlgorithm

	
class sierra::nalu::SteadyThermalContactSrcNodeSuppAlg

	Inherits from sierra::nalu::SupplementalAlgorithm

Mesh Motion/Displacement Utilities

	
class sierra::nalu::LinearRampMeshDisplacementAuxFunction

	Inherits from sierra::nalu::AuxFunction

	
class sierra::nalu::SinMeshDisplacementAuxFunction

	Inherits from sierra::nalu::AuxFunction

	
class sierra::nalu::WindEnergyAuxFunction

	Inherits from sierra::nalu::AuxFunction

Post-Processing Utilities

	
class sierra::nalu::TurbulenceAveragingPostProcessing

	

	
class sierra::nalu::DataProbePostProcessing

	

	
class sierra::nalu::SolutionNormPostProcessing

	

	
class sierra::nalu::SurfaceForceAndMomentAlgorithm

	Inherits from sierra::nalu::Algorithm

	
class sierra::nalu::SurfaceForceAndMomentWallFunctionAlgorithm

	Inherits from sierra::nalu::Algorithm

Writing Developer Documentation

Developer documentation should be written using Doxygen annotations directly in
the source code. This allows the documentation to live with the code essentially
as comments that Doxygen is able to extract automatically into a more human
readable form. Doxygen requires special syntax markers to indicate comments that
should be processed as inline documentation vs. generic comments in the source
code. The Doxygen manual [http://www.stack.nl/~dimitri/doxygen/manual/index.html] provides detailed
information on the various markers available to tailor the formatting of
auto-generated documentation. It is recommended that users document the classes
and methods in the header file. A sample header file with specially formatted
comments is shown below. You can download a
copy of the file.

Listing 2 Sample C++ header file showing inline documentation using specially formatted comments.

/** @file example.h
 * @brief Brief description of a documented file.
 *
 * Longer description of a documented file.
*/

/** Here is a brief description of the example class.
 *
 * This is a more in-depth description of the class.
 * This class is meant as an example.
 * It is not useful by itself, rather its usefulness is only a
 * function of how much it helps the reader. It is in a sense
 * defined by the person who reads it and otherwise does
 * not exist in any real form.
 *
 * @note This is a note.
 *
 */

#ifndef EXAMPLECLASS_H
#define EXAMPLECLASS_H

class ExampleClass
{

public:

 /// Create an ExampleClass.
 ExampleClass();

 /** Create an ExampleClass with lot's of intial values.
 *
 * @param a This is a description of parameter a.
 * @param b This is a description of parameter b.
 *
 * The distance between \f$(x_1,y_1)\f$ and \f$(x_2,y_2)\f$ is
 * \f$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\f$.
 */
 ExampleClass(int a, float b);

 /** ExampleClass destructor description.
 */
 ~ExampleClass();

 /// This method does something.
 void DoSomething();

 /**
 * This is a method that does so
 * much that I must write an epic
 * novel just to describe how much
 * it truly does.
 */
 void DoNothing();

 /** Brief description of a useful method.
 * @param level An integer setting how useful to be.
 * @return Description of the output.
 *
 * This method does unbelievably useful things.
 * And returns exceptionally useful results.
 * Use it everyday with good health.
 * \f[
 * |I_2|=\left| \int_{0}^T \psi(t)
 * \left\{
 * u(a,t)-
 * \int_{\gamma(t)}^a
 * \frac{d\theta}{k(\theta,t)}
 * \int_{a}^\theta c(\xi)u_t(\xi,t)\,d\xi
 * \right\} dt
 * \right|
 * \f]
 */
 void* VeryUsefulMethod(bool level);

 /** Brief description of a useful method.
 * @param level An integer setting how useful to be.
 * @return Description of the output.
 *
 * - Item 1
 *
 * More text for this item.
 *
 * - Item 2
 * + nested list item.
 * + another nested item.
 * - Item 3
 *
 * # Markdown Example
 * [Here is a link.](http://www.google.com/)
 */
 void* AnotherMethod(bool level);

protected:
 /** The protected methods can be documented and extracted too.
 *
 */
 void SomeProtectedMethod();

private:

 const char* fQuestion; ///< The question
 int fAnswer; ///< The answer

}; // End of class ExampleClass

#endif // EXAMPLE_H

Once processed by Doxygen and embedded in Sphinx, the resulting documentation of
the class looks as shown below:

	
class ExampleClass

	Here is a brief description of the example class.

This is a more in-depth description of the class. This class is meant as an example. It is not useful by itself, rather its usefulness is only a function of how much it helps the reader. It is in a sense defined by the person who reads it and otherwise does not exist in any real form.

	Note

	This is a note.

Public Functions

	
ExampleClass()

	Create an ExampleClass.

	
ExampleClass(int a, float b)

	Create an ExampleClass with lot’s of intial values.

The distance between \((x_1,y_1)\) and \((x_2,y_2)\) is \(\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\).
	Parameters

	
	a: This is a description of parameter a.

	b: This is a description of parameter b.

	
~ExampleClass()

	ExampleClass destructor description.

	
void DoSomething()

	This method does something.

	
void DoNothing()

	This is a method that does so much that I must write an epic novel just to describe how much it truly does.

	
void *VeryUsefulMethod(bool level)

	Brief description of a useful method.

This method does unbelievably useful things. And returns exceptionally useful results. Use it everyday with good health.
\[|I_2|=\left| \int_{0}^T \psi(t) \left\{ u(a,t)- \int_{\gamma(t)}^a \frac{d\theta}{k(\theta,t)} \int_{a}^\theta c(\xi)u_t(\xi,t)\,d\xi \right\} dt \right| \]

	Return

	Description of the output.

	Parameters

	
	level: An integer setting how useful to be.

	
void *AnotherMethod(bool level)

	Brief description of a useful method.

	Item 1

More text for this item.

	Item 2
	nested list item.

	another nested item.

	Item 3

	Return

	Description of the output.

	Parameters

	
	level: An integer setting how useful to be.

Markdown Example

Here is a link. [http://www.google.com/]

Protected Functions

	
void SomeProtectedMethod()

	The protected methods can be documented and extracted too.

Private Members

	
const char *fQuestion

	The question.

	
int fAnswer

	The answer.

Writing User Documentation

This documentation is written in Sphinx and is generated automatically
on the http://nalu.readthedocs.io
website every time the Nalu Github repo [https://github.com/nalucfd/nalu] is updated.
This documentation can also be built locally on your machine
by using the instructions here. Sphinx uses
restructured text (RST) to generate the documentation in many other
formats, such as this html version. Refer to the primer on writing
restructured text here [http://www.sphinx-doc.org/en/stable/rest.html].

Building the Documentation

This document describes how to build Nalu’s documentation.
The documentation is based on the use of Doxygen, Sphinx,
and Doxylink. Therefore we will need to install these tools
as well as some extensions of Sphinx that are utilized.

Install the Tools

Install CMake, Doxygen, Sphinx, Doxylink, and the
extensions used. Doxygen uses the dot application
installed with GraphViz. Sphinx uses a combination
of extensions installed with pip install as well as some
that come with Nalu located in the _extensions
directory. Using Homebrew on Mac OS X,
this would look something like:

brew install cmake
brew install python
brew install doxygen
brew install graphviz
pip2 install sphinx
pip2 install sphinxcontrib-bibtex
pip2 install breathe
pip2 install sphinx_rtd_theme

On Linux, CMake, Python, Doxygen, and GraphViz could be installed
using your package manager, e.g. sudo apt-get install cmake.

Run CMake Configure

In the Nalu repository [https://github.com/NaluCFD/Nalu] checkout,
create your own or use the build directory that already exists in the repo.
Change to your designated build directory and run CMake with -DENABLE_DOCUMENTATION
on. For example:

cmake -DTrilinos_DIR:PATH=$(spack location -i nalu-trilinos) \
 -DYAML_DIR:PATH=$(spack location -i yaml-cpp) \
 -DCMAKE_BUILD_TYPE=RELEASE \
 -DENABLE_DOCUMENTATION:BOOL=ON \
 ..

If all of the main tools are found successfully, CMake should configure with the ability
to build the documentation. If Sphinx or Doxygen aren’t found, the configure will skip
the documentation.

Make the Docs

In your designated build directory, issue the command make docs which
should first build the Doxygen documentation and then the Sphinx documentation.
If this completes successfully, the entry point to
the documentation should be in build/docs/html/index.html.

Developer Workflow

This document describes a suggested developer workflow for Nalu.

Nalu Style Guide

	No tabs. Remove them from your editor. Better yet, use eclipse and follow the xml style. Use the format here [https://github.com/NaluCFD/Nalu/blob/master/SQA/naluEclipseFormat.xml].

	Use underscores for private data, e.g., const double thePrivateData_.

	Use camel case for data members and classes unless it is silly (you get the idea).

	Camel case on Class names always; non camel case for methods, e.g.,

const double Realm::get_me() {
 return hereIAm_; // hmmm... silly? your call
}

	Use const when possible, however, do not try to be a member of the ‘const’ police force.

	We need logic to launch some special physics. Try to avoid run time logic by designing with polymorphic/templates.

	When possible, add classes that manage loading, field registration, setup and execute, e.g., SolutionNormPostProcessing, etc.

Contributing to Nalu

	There is no rush to push. We only support production tested capability. Better yet, peform code verification and unit testing.

	Always run the full regression test suite. No exceptions.

	Peer review when fully appropriate (ask for a pull request).

	If adding a new feature, include a regression test for this feature. Refer to the section of this documentation on adding a test here.

Sierra Low Mach Module: Nalu - Theory Manual

The SIERRA Low Mach Module: Nalu (henceforth referred to as Nalu), developed at Sandia National Labs, represents a generalized unstructured, massively parallel, variable density turbulent flow capability designed for energy applications. This code base began as an effort to prototype Sierra Toolkit,

 1. Low Mach Number Derivation

1. Low Mach Number Derivation

The low Mach number equations are a subset of the fully compressible
equations of motion (momentum, continuity and energy), admitting large
variations in gas density while remaining acoustically incompressible.
The low Mach number equations are preferred over the full compressible
equations for low speed flow problems as the accoustics are of little
consequence to the overall simulation accuracy. The technique avoids the
need to resolve fast-moving acoustic signals. Derivations of the low
Mach number equations can be found in found in Rehm and
Baum,

 2. Supported Equation Set

2. Supported Equation Set

This section provides an overview of the currently supported equation
sets. Equations will be decribed in integral form with assumed Favre
averaging. However, the laminar counterparts are supported in the code
base and are obtain in the user file by ommitting a turbulence model
specification.

2.1. Conservation of Mass

The continuity equation is always solved in the variable density form.

\[\int \frac{\partial \bar{\rho}} {\partial t}\, dV
+ \int \bar{\rho} \tilde{u}_i n_i\, dS = 0\]

Since Nalu uses equal-order interpolation (variables are collocated)
stabilization is required. The stabilization choice will be developed in
the pressure stabilization section.

Note that the use of a low speed compressible formulation requires that
the fluid density be computed by an equation of state that uses the
thermodynamic pressure. This thermodynamic pressure can either be
computed based on a global energy/mass balance or allowed to be
spatially varying. By modification of the continuity density time
derivative to include the \(\frac{\partial \rho}{\partial p}\)
sensitivity, an equation that admits acoustic pressure waves is
realized.

2.2. Conservation of Momentum

The integral form of the Favre-filtered momentum equations used for turbulent transport are

(1)\[\begin{split}\int \frac{\partial \bar{\rho} \tilde{u}_i}{\partial t} {\rm d}V
+ \int \bar{\rho} \tilde{u}_i \tilde{u}_j n_j {\rm d}S
=
\int \tilde{\sigma}_{ij} n_j {\rm d}S
-\int \tau^{sgs}_{ij} n_j {\rm d}S \\
+ \int \left(\bar{\rho} - \rho_{\circ} \right) g_i {\rm d}V,\end{split}\]

where the subgrid scale turbulent stress \(\tau^{sgs}_{ij}\) is defined as

(2)\[\tau^{sgs}_{ij} \equiv \bar{\rho} (\widetilde{u_i u_j} -
 \tilde{u}_i \tilde{u}_j).\]

The Cauchy stress is provided by,

\[\sigma_{ij} = 2 \mu \tilde S^*_{ij} - \bar P \delta_{ij}\]

and the traceless rate-of-strain tensor defined as follows:

\[\begin{split}\tilde S^*_{ij} = \tilde S_{ij} - \frac{1}{3} \delta_{ij} \tilde S_{kk} \\
= \tilde S_{ij} - \frac{1}{3} \frac{\partial \tilde u_k }{\partial x_k}\delta_{ij}.\end{split}\]

In a low Mach flow, as described in the low Mach theory section, the
above pressure, \(\bar P\) is the purturbation about the
thermodynamic pressure, \(P^{th}\). In a low speed compressible
flow, i.e., flows confined to a closed domain with energy or mass
addition in which the continuity equation has been modifed to accomodate
accoustics, this pressure is interpreted at the thermodynamic pressure
itself.

For LES, \(\tau^{sgs}_{ij}\) that appears in Equation

 3. Discretization Approach

3. Discretization Approach

Nalu supports two discretizations: control volume finite element and
(CVFEM) edge-based vertex centered (EBVC). Each are finite volume
forumations and each solve for the primitives are are each considered
vertex-based schemes. Considerable testing has provided a set of general
rules as to which scheme is optimal. In general, all equations and
boundary conditions support either equation discretization with
exception of the solid stress equation which has only been implemented
for the CVFEM technique.

For generalized unstructured meshes that have poor quality, CVFEM has
been shown to excell in accuracy and robustness. This is mostly due to
the inhearant accuracy limitation for the non-orthogonal correction
terms that appear in the diffusion term and pressure stabilization for
the EBVC scheme. For generalized unstructured meshes of decent quality,
either scheme is ideal. Finally, for highly structured meshes with
substantail aspect ratios, the edge-based scheme is ideal.

In general, the edge-based scheme is at least two times faster per
iteration than the element-based scheme. For some classes of flows, it
can be up to four times faster. However, due to the lagged coupling
between the projected nodal gradient equation and the dofs, on meshes
with high non-orthogonality, nonlinear residual convergence can be
delayed.

3.1. CVFEM Dual Mesh

The classic low Mach algorithm uses the finite volume technique known as
the control volume finite element method, see
Schneider, [SR87], or
Domino, [Dom06]. Control volumes (the mesh dual)
are constructed about the nodes, shown in Figure Fig. 3.1 (upper left).
Each element contains a set of sub-faces that define control-volume
surfaces. The sub-faces consist of line segments (2D) or surfaces (3D).
The 2D segments are connected between the element centroid and the edge
centroids. The 3D surfaces (not shown here) are connected between the
element centroid, the element face centroids, and the edge centroids.
Integration points also exist within the sub-control volume centroids.

Recent work by Domino, [Dom14], has provided a
proof-of-concept higher order CVFEM implementation whereby the linear
basis and dual mesh definition is extended to higher order. The current
code base supports the usage of P=2 elements (quadratic) for both 2D and
3D quad/hex topologies. This method has been formally demonstrated to be
third-order spatially accurate and second-order in-time accurate.
General polynomial promotion has been deployed in the higher order
github branch. Figure Fig. 3.1 illustrates a general polynomial
promotion from P=1 to P=6 and demonstrated spectral convergence
using the method of manufactured solutions in Figure Fig. 3.2.

[image: ../../_images/cvfem_nodes.png]
Fig. 3.1 Polynomial promotion for a canonical CVFEM quad element patch from \(P=1\) to \(P=6\).

[image: ../../_images/cvfem_conv.png]
Fig. 3.2 A recent spectral convergence plot using the Method of Manufactured Solutions for \(P=1\) through \(P=8\).

When using CVFEM, the discretized equations described in this manual are
evaluated at either subcontrol-surface integration points (terms that
have been integrated by parts) or at the subcontrol volume (time and
source terms). Interpolation within the element is obtained by the
standard elemental basis functions,

(1)\[{\phi_{ip} = \sum N^{ip}_k \phi_k.}\]

where the index \(k\) represents a loop over all nodes in the
element.

Gradients at the subcontrol volume surfaces are obtained by taking the
derivative of Eq. (1), to obtain,

(2)\[\frac{\partial \phi_{ip}}{\partial x_j} = \sum \frac{\partial N^{ip}_{j,k}} {\partial x_j} \phi_k.\]

The usage of the CVFEM methods results in the canonical 27-point stencil
for a structured hexahedral mesh.

3.2. Edge-Based Discretization

In the edge-based discretization, the dual mesh defined in the CVFEM
method is used to pre-process both dual mesh nodal volumes (needed in
source and time terms) and edge-based area vectors (required for
integrated-by-parts quantities, e.g., advection and diffusion terms).

[image: ../../_images/cvfem_onecv.png]
Fig. 3.3 A control volume centered about a finite-element node in a collection of 2-D quadrilateral elements (from [Dom06].)

Consider Figure Fig. 3.3, which is the original set of CVFEM dual mesh
quadrature points shown above in Figure Fig. 3.1. Specifically, there are four subcontrol
volumes about node 5 that contribute to the nodal volume dual mesh. In
an edge-based scheme, the time and source terms use single point
quadrature by assembling these four subcontrol volume contributions
(eight in 3D) into one single nodal volume. In most cases, source terms
may include gradients that are obtained by using the larger
element-based stencil.

The same reduction of gauss points is realized for the area vector.
Consider the edge between nodes 5 and 6. In the full CVFEM approach,
subcontrol surfaces within the top element (5,6,9,8) and bottom element
(2,3,6,5) are reduced to a single area vector at the edge midpoint of
nodes 5 and 6. Therefore, advection and diffusion is now done in a
manner very consistent with a cell centered scheme, i.e., classic
“left”/“right” states.

The consolidation of time and source terms to nodal locations along with
advection and diffusion at the edge mid-point results in a canonical
five-point stencil in 2D and seven in 3D. Note the ability to handle
hybrid meshes is readily peformed one nodal volume and edge area are
pre-processed. Edges and nodes are the sole topology that are iterated,
thus making this scheme highly efficient, although inherantly limited to
second order spatial order of accuracy.

In general, the edge-based scheme is second order spatially accurate.
Formal verification has been done to evaluate the accuracy of the EBVC
relative to other implemented methods
(Domino,

 4. Advection Stabilization

4. Advection Stabilization

In general, advection for both the edge and element-based scheme is
identical with standard exception of the location of the integration
points. The full advection term is simply written as,

(1)\[ADV_{\phi} = \int \rho u_j \phi_{ip} A_j = \sum \dot{m} \phi_{ip},\]

where \(\phi\) is \(u_i\), \(Z\), \(h\), etc.

The evaluation of \(\phi_{ip}\) defines the advection stabilization
choice. In general, the advection choice is a cell Peclet blending
between higher order upwind (\(\phi_{upw}\)) and a generalized
un-stabilized central (Galerkin) operator, \(\phi_{gcds}\),

(2)\[\phi_{ip} = \eta \phi_{upw} + (1-\eta)\phi_{gcds}.\]

In the above equation, \(\eta\) is a cell Peclet
blending. The generalized central operator can take on a pure second
order or pseudo fourth order form (see below). For the classic Peclet
number functional form (see Equation

 5. Pressure Stabilization

5. Pressure Stabilization

A number of papers describing the pressure stabilization approach that
Nalu uses are in the open literature,
Domino,

 6. RTE Stabilization

6. RTE Stabilization

The RTE is solved using the method of discrete ordinates using the
symmetric Thurgood quadrature set. The discrete ordinates method is one
in which discrete directions of the intensity are solved. The quadrature
order, \(N\), defines the number of ordinate directions that are
solved in a given iteration. In the case of non-scattering media, this
results is a set of decoupled linear partial differential equations. For
the symmetric Thurgood set, the number of ordinate directions is given
by \(8N^2\). Values of N that are required for suitable accuracy
starts at \(N=2\) with more than adequate resolution at \(N=4\).

For each ordinate direction, a weight is provided, \(w_k\) (not to
be confused with the test function \(w\)). For each intensity
ordinate direction, \(I_k\), integrated quantities such as scalar
flux and radiative heat flux are computed as,

\[G = \sum I_k w_k\]

and,

\[q_j = \sum I_k s_j w_k.\]

The stabilization that is used in the RTE equation can be placed in the
class of residual-based stabilization. In this particular
implementation, the scaled residual of the RTE equation is added. This
implementation has its roots in the classic variational multiscale
(VMS).

In the VMS framework, the degree of freedom is decomposed in terms of
its resolved and fine scale, \(I+I'\). Without specific definition
of the test function, the weighted residual statement for the RTE within
a VMS framework is given by,

(1)\[\int w \left(s_i \frac{\partial}{\partial x_i} \left(I\left(s\right) + I'\left(s\right)\right)
+ (\mu_a + \mu_s) \left(I\left(s\right) + I'\left(s\right)\right) - \frac{\mu_a \sigma T^4}{\pi}
- \frac{\mu_s}{4\pi}G \right) {\rm d}V = 0.\]

Grouping resolved and fine scale terms results in an equation takes the
form of a standard Galerkin contribution in addition to the fine
structure statement,

(2)\[\begin{split}\int w \left(s_i \frac{\partial}{\partial x_i} I\left(s\right)
+ (\mu_a + \mu_s)I - \frac{\mu_a \sigma T^4}{\pi} -\frac{\mu_s}{4\pi}G \right) {\rm d}V \\
+ \int w \left(s_i \frac{\partial}{\partial x_i} I'\left(s\right)
+ (\mu_a + \mu_s) I' \right) {\rm d}V = 0.\end{split}\]

Note that the isotropic source term has not contributed to the VMS
framework other than through the right hand source term.

In general, gradients in the fine scale quantity are to be avoided.
Therefore, the first term in the second line of Eq.

 7. Nonlinear Stabilization Operator (NSO)

7. Nonlinear Stabilization Operator (NSO)

An alternative to classic Peclet number blending is the usage of a
discontinuity capturing operator (DCO), or in the low Mach context a
nonlinear stabilization operator (NSO). In this method, an artifical
viscosity is defined that is a function of the local residual and scaled
computational gradients. Viable usages for the NSO can be
advection/diffusion problems in addition to the aforementioned RTE VMS
approach.

The formal finite element kernel for a NSO approach is as follows,

(1)\[\sum_e \int_\Omega \nu(\mathbf{R}) \frac{\partial w}{\partial x_i} g^{ij}
\frac{\partial \phi} {\partial x_j} d\Omega,\]

where \(\nu(\mathbf{R})\) is the artifical viscosity which is a
function of the pde fine-scale residual and \(g^{ij}\) is the
covariant metric tensor).

For completeness, the covariant and contravarient metric tensor are
given by,

(2)\[g^{ij} = \frac{\partial x_i} {\partial \xi_k}\frac{\partial x_j} {\partial \xi_k},\]

and

(3)\[g_{ij} = \frac{\partial \xi_k} {\partial x_i} \frac{\partial \xi_k} {\partial x_j},\]

where \(\xi = (\xi_1, \xi_2, \xi_3)^T\). The form of
\(\nu(\mathbf{R})\) currently used is as follows,

(4)\[\nu = \sqrt{ \frac{\mathbf{R_k} \mathbf{R_k}}
{\frac {\partial \phi}{\partial x_i} g^{ij} \frac{\partial \phi}{\partial x_j}} }.\]

The classic paper by Shakib (

 8. Turbulence Modeling

8. Turbulence Modeling

Unlike a RANS approach which models most or all of the turbulent
fluctuations, LES directly solves for all resolved turbulent length
scales and only models the smallest scales below the grid size. In this
way, a majority of the problem-dependent, energy-containing turbulent
structure is directly solved in a model-free fashion. The subgrid scales
are closer to being isotropic than the resolved scales, and they
generally act to dissipate turbulent kinetic energy cascaded down from
the larger scales in momentum-driven turbulent flows. Modeling of these
small scales is generally more straightforward than RANS approaches, and
overall solutions are usually more tolerant to LES modeling errors
because the subgrid scales comprise such a small portion of the overall
turbulent structure. While LES is generally accepted to be much more
accurate than RANS approaches for complex turbulent flows, it is also
significantly more expensive than equivalent RANS simulations due to the
finer grid resolution required. Additionally, since LES results in a
full unsteady solution, the simulation must be run for a long time to
gather any desired time-averaged statistics. The tradeoff between
accuracy and cost must be weighed before choosing one method over the
other.

The separation of turbulent length scales required for LES is obtained
by using a spatial filter rather than the RANS temporal filter. This
filter has the mathematical form

(1)\[\overline{\phi(\boldsymbol{x},t)} \equiv \int_{-\infty}^{+\infty}
 \phi(\boldsymbol{x}',t) G(\boldsymbol{x}' - \boldsymbol{x})\,
 \mathrm{d}\boldsymbol{x}',\]

which is a convolution integral over physical space
\(\boldsymbol{x}\) with the spatially-varying filter function
\(G\). The filter function has the normalization property
\(\int_{-\infty}^{+\infty}
G(\boldsymbol{x})\, \mathrm{d}\boldsymbol{x} = 1\), and it has a
characteristic length scale \(\Delta\) so that it filters out
turbulent length scales smaller than this size. In the present
formulation, a simple “box filter” is used for the filter function,

\[\begin{split}G(\boldsymbol{x}' - \boldsymbol{x}) = \left\{ \begin{array}{l@{\quad:\quad}l}
 1/V & (\boldsymbol{x}' - \boldsymbol{x}) \in \mathcal{V} \\
 0 & \mathrm{otherwise} \\
 \end{array} \right.,\end{split}\]

where \(V\) is the volume of control volume \(\mathcal{V}\)
whose central node is located at \(\boldsymbol{x}\). This is
essentially an unweighted average over the control volume. The length
scale of this filter is approximated by \(\Delta = V^\frac{1}{3}\).
This is typically called the grid filter, as it filters out scales
smaller than the computational grid size.

Similar to the RANS temporal filter, a variable can be represented in
terms of its filtered and subgrid fluctuating components as

\[\phi = \bar{\phi} + \phi'.\]

For most forms of the filter function \(G(\boldsymbol{x})\),
repeated applications of the grid filter to a variable do not yield the
same result. In other words, \(\bar{\bar{\phi}} \ne
\bar{\phi}\) and therefore \(\overline{\phi'} \ne 0\), unlike with
the RANS temporal averages.

As with the RANS formulation, modeling is much simplified in the
presence of large density variations if a Favre-filtered approach is
used. A Favre-filtered variable \(\tilde{\phi}\) is defined as

\[\tilde{\phi} \equiv \frac{ \overline{\rho\phi} }{ \bar{\rho} }\]

and a variable can be decomposed in terms of its Favre-filtered and
subgrid fluctuating component as

\[\phi = \tilde{\phi} + \phi''.\]

Again, note that the useful identities for the Favre-filtered RANS
variables do not apply, so that
\(\bar{\tilde{\phi}} \ne \tilde{\phi}\) and
\(\overline{\phi''} \ne 0\). The Favre-filtered approach is used for
all LES models in Nalu.

8.1. Standard Smagorinsky LES Model

The standard Smagorinsky LES closure model approximates the subgrid
turbulent eddy viscosity using a mixing length-type model, where the LES
grid filter size \(\Delta\) provides a natural length scale. The
subgrid eddy viscosity is modeled simply as (Smagorinsky)

(2)\[\mu_t = \rho \left(C_s \Delta \right)^2 | \tilde {S} |,\]

The constant coefficient \(C_s\) typically varies between 0.1 and
0.24 and should be carefully tuned to match the problem being solved
(Rogallo and Moin, [RM84]). The default value of 0.17 is assigned in the code base.

Although this model is desirable due to its simplicity and efficiency,
care should be taken in its application. It is known to predict subgrid
turbulent eddy viscosity proportional to the shear rate in the flow,
independent of the local turbulence intensity. Non-zero subgrid turbulent
eddy viscosity is even predicted in completely laminar regions of the
flow, sometimes even preventing a natural transition to turbulence. The model also
does not asymptotically replicate near wall behavior without either dampening or a
dynamic procedure.

8.2. Wall Adapting Local Eddy-Viscosity, WALE

The WALE model of Ducros el al.,

 9. Supported Boundary Conditions

9. Supported Boundary Conditions

9.1. Inflow Boundary Condition

9.1.1. Continuity

Continuity uses a flux boundary condition with the incoming mass flow
rate based on the user specified values for velocity,

\[\dot{m}_c = \rho^{spec} u^{spec}_j A_j.\]

As this is a vertex-based code, at inflow and Dirichlet wall boundary
locations, the continuity equation uses the specified velocity within
the inflow boundary condition block.

9.1.2. Momentum, Mixture Fraction, Enthalpy, Species, \(k_{sgs}\), k and \(\omega\)

These degree-of-freedoms (DOFs) each use a Dirichlet value with the
specified user value. For all Dirichlet values, the row is zeroed with a
unity placed on the diagonal. The residual is zeroed and set to the
difference between the current value and user specified value.

9.2. Wall Boundary Conditions

9.2.1. Continuity

Continuity uses a no-op.

9.2.2. Momentum

When resolving the boundary layer, Momentum again uses a no-slip
Dirichlet condition., e.g., \(u_i = 0\).

In the case of a wall model, a classic wall function is applied. The
wall shear stress enters the discretization of the momentum equations by
the term

(1)\[\int \tau_{ij} n_j dS = -{F_w}_i .\]

Wall functions are used to prescribe the value of the wall shear stress
rather than resolving the boundary layer within the near-wall domain.
The fundamental momentum law of the wall formulation, assuming
fully-developed turbulent flow near a no-slip wall, can be written as,

(2)\[u^+ = \frac{u_{\|}}{u_{\tau}}
 = \frac{1}{\kappa} \ln \left(Ey^+\right) ,\]

where \(u^+\) is defined by the the near-wall parallel velocity,
\(u_{\|}\), normalized by the wall friction velocity,
\(u_{\tau}\). The wall friction velocity is related to the turbulent
kinetic energy by,

(3)\[u_{\tau} = C_\mu^{1/4} k^{1/2}.\]

by assuming that the production and dissipation of turbulence is in
local equilibrium. The wall friction velocity is also computed given the
density and wall shear stress,

\[u_\tau = (\frac{\tau_w} {\rho})^{0.5}.\]

The normalized perpendicular distance from the point in question to the
wall, \(y^+\), is defined as the following:

(4)\[y^+ = \frac{ \rho Y_p}{\mu }\left(\frac{\tau_w}{\rho} \right)^{1/2}
 = \frac{ \rho Y_p u_{\tau}} {\mu }.\]

The classical law of the wall is as follows:

(5)\[u^+ = \frac{1}{\kappa} \ln(y^+) + C,\]

where \(\kappa\) is the von Karman constant and \(C\) is the
dimensionless integration constant that varies based on authorship and
surface roughness. The above expression can be re-written as,

(6)\[u^+ = \frac{1}{\kappa} \ln(y^+) + \frac{1}{\kappa} \ln(\exp(\kappa C)),\]

or simplified to the following expression:

(7)\[\begin{split}u^+ &= \frac{1}{\kappa} \left(\ln(y^+) + \ln(\exp(\kappa C))\right) \\
&= \frac{1}{\kappa} \ln(E y^+).\end{split}\]

In the above equation, \(E\), is referred to in the text as the
dimensionless wall roughness parameter and is described by,

(8)\[E = \exp(\kappa C).\]

In Nalu, \(\kappa\) is set to the value of 0.42 while the value of
\(E\) is set to 9.8 for smooth walls (White suggests values of
\(\kappa=0.41\) and \(E=7.768.\)). The viscous sublayer is
assumed to extend to a value of \(y^+\) = 11.63.

The wall shear stress, \(\tau_w\), can be expressed as,

(9)\[\tau_w = \rho u_\tau^2 = \rho u_\tau {\frac{u_\|} {u^+}}
 = \frac{\rho \kappa u_{\tau}}{\ln \left(Ey^+\right) } u_\|
 = \lambda_w u_\| ,\]

where \(\lambda_w\) is simply the grouping of the factors from the
law of the wall. For values of \(y^+\) less than 11.63, the wall
shear stress is given by,

(10)\[\tau_w = \mu \frac{u_\|}{Y_p} .\]

The force imparted by the wall, for the \(i_{th}\) component of
velocity, can be written as,

(11)\[F_{w,i}= -\lambda_w A_w u_{i\|} ,\]

where \(A_w\) is the total area over which the shear stress acts.

The use of a general, non-orthogonal mesh adds a slight complexity to
specifying the force imparted on the fluid by the wall. As shown in
Equation (11), the velocity component parallel to the wall
must be determined. Use of the unit normal vector, \(n_j\), provides
an easy way to determine the parallel velocity component by the
following standard vector projection:

(12)\[\Pi_{ij} = \left [\delta_{ij} - n_i n_j \right].\]

Carrying out the projection of a general velocity, which is not
necessarily parallel to the wall, yields the velocity vector parallel to
the wall,

(13)\[u_{i\|} = \Pi_{ij} {u}_j = u_i\left(1-{n_i}^2\right)
 -\sum_{j=1;j\neq j}^{n} u_j n_i n_j.\]

Note that the component that acts on the particular \(i^{th}\)
component of velocity,

(14)\[-\lambda_w A_w \left(1-n_i n_i\right) u_{i\|} ,\]

provides a form that can be potentially treated implicitly; i.e., in a
way to augment the diagonal dominance of the central coefficient of the
\(i^{th}\) component of velocity. The use of residual form adds a
slight complexity to this implicit formulation only in that appropriate
right-hand-side source terms must be added.

9.2.3. Mixture Fraction

If a value is specified for each quantity within the wall boundary
condition block, a Dirichlet condition is applied. If no values are
specified, a zero flux condition is applied.

9.2.4. Enthalpy

If the temperature is specified within the wall boundary condition
block, a Dirichlet condition is always specified. Wall functions for
enthalpy transport have not yet been implemented.

The simulation tool supports multi-physics coupling via conjugate heat
transfer and radiative heat transfer. Coupling parameters required for
the thermal boundary condition are post processed by the fluids or PMR
Realm. For conjugate and radiative coupling, the thermal solve provides
the surface temperature. From the surface temperature, a wall enthalpy
is computed and used.

9.2.5. Thermal Heat Conduction

If a temperature is specified in the wall block, and the surface is not
an interface condition, then a Dirichlet approach is used. If conjugate
heat transfer is included, then the boundary condition applied is as
follows,

\[-\kappa \frac{\partial T} {\partial x_j} n_j dS = h(T-T^o)dS,\]

where \(h\) is the heat transfer coefficient and \(T^o\) is the
reference temperature. The details of how these quantities are computed
are currently omitted in this manual. In general, the quantities are
post processed from the fluids temperature field. A surface-based
gradient is computed on the boundary face. Nodes on the face augment a
heat transfer coefficient field while nodes off the face contribute to a
reference temperature.

For radiative heat transfer, the boundary condition applied is as
follows:

\[-\kappa \frac{\partial T} {\partial x_j} n_j dS = \epsilon (\sigma T^4 - H) dS,\]

where \(H\) is again the irradiation provided by the RTE solve.

If no temperature is specified or an adiabatic line command is used, a
zero flux condition is applied.

9.2.6. Species

If a value is specified for each quantity within the wall boundary
condition block, a Dirichlet condition is applied. If no values are
specified, a zero flux condition is applied.

9.3. Atmospheric Boundary Layer Surface Conditions

9.3.1. Monin-Obukhov Theory

Consider atmospheric flow over a flat but non-smooth surface; the
coordinate system convention is that flow is along the \(x\)-axis, while
the \(z\)-axis is oriented normal to the surface. The surface layer is
the relatively thin layer near the surface where strong wind and
temperature gradients exist. Turbulence within this layer can be
generated through mechanisms of both shear and thermal convection; the
relative contributions of these two mechanisms is determined by the
stability state of the atmosphere. The stability state is
characterized by the Monin-Obukhov length:

\[L = - \frac{u_\tau^3 \theta_{ref}}{\kappa g (\overline{w^\prime
 \theta^\prime})_s};\]

\(u_\tau\) is the friction velocity, defined as the
square root of the magnitude of the Reynolds shear stress at
the surface, or

\[u_\tau = \left(\overline{w^\prime u^\prime}^2 + \overline{w^\prime
u^\prime}^2 \right)^{1/4} = \sqrt{\frac{\tau_s}{\rho_s}}\]

\(\theta_{ref}\) is a reference (virtual potential) temperature associated with the air
within the surface layer; for example, the average temperature within
the surface layer. \(\kappa \approx 0.41\) is the von Karman constant,
and \(g\) is the acceleration of gravity. \(\overline{w^\prime \theta^\prime}_s\)
is the surface turbulent temperature flux. Both the
turbulent shear stress and turbulent temperature flux are approximately
constant within the surface layer.

Applying a gradient diffusion model for the turbulent temperature flux leads to:

\[\overline{w^\prime \theta^\prime}_s = -k_T \frac{\partial \theta}{\partial z}\]

The sign of \(L\) is then connected to the sign of the temperature
gradient within the surface layer. Three regimes are delineated:

	\(\frac{1}{L} > 0, \quad \frac{\partial \theta}{\partial z} > 0\), stable stratification

	\(\frac{1}{L} = 0, \quad \frac{\partial \theta}{\partial z} = 0\), neutral stratification

	\(\frac{1}{L} < 0, \quad \frac{\partial \theta}{\partial z} < 0\), unstable stratification

Monin-Obukhov theory postulates the following similarity laws for mean
velocity parallel to the surface and temperature,

(15)\[\frac{\kappa z}{u_\tau}\frac{\partial \overline{u}_{||}}{\partial z} =
\phi_m\left(\frac{z}{L}\right),\]

(16)\[\frac{\kappa z u_\tau}{\overline{w^\prime \theta^\prime}_s}
\frac{\partial \overline{\theta}}{\partial z} = \phi_h\left(\frac{z}{L}\right),\]

where the forms of the non-dimensional functions \(\phi_m\) and \(\phi_h\) are determined
from empirical observations. Analytical functions have been fit to the
data; these are not given here, rather, we present the integrated form
of ((15)) and ((16)), since these are the forms required
by the code implementation.

For neutral stratification, \(\phi_m = 1\) and we recover the
logarithmic profile for a “fully rough” surface,

(17)\[\overline{u}_{||}(z) = \frac{u_\tau}{\kappa}\ln\frac{z}{z_0},\]

where \(z_0\) is the characteristic roughness height. Note that viscous
scaling involving surface viscosity and density properties is not
required with this form of the logarithmic profile, since the
roughness height is large enough to eliminate the presence of a
laminar sublayer and buffer layer.

For stable stratification, the surface layer profiles take the form

(18)\[\overline{u}_{||}(z) = \frac{u_\tau}{\kappa}\left(\ln\frac{z}{z_0} +
\gamma_m\frac{z}{L}\right)\]

(19)\[\overline{\theta}(z) = \overline{\theta}(z_0) +
\frac{\theta_*}{\kappa} \left(\alpha_h\ln\frac{z}{z_0} +
\gamma_h\frac{z}{L}\right)\]

\(\theta_*\) is calculated from the temperature flux and friction velocity as
\(\theta_* = -\frac{\overline{w^\prime \theta^\prime}_s}{u_\tau}\), and
\(\gamma_m\), \(\alpha_h\), and \(\gamma_h\) are constants specified below.

For unstable stratification, the surface layer profiles take the form

(20)\[\overline{u}_{||}(z) = \frac{u_\tau}{\kappa}\left(\ln\frac{z}{z_0} -
\psi_m\left(\frac{z}{L}\right)\right)\]

(21)\[\overline{\theta}(z) = \overline{\theta}(z_0) +
\alpha_h\frac{\theta_*}{\kappa}\left(\ln\frac{z}{z_0} -
\psi_h\left(\frac{z}{L}\right)\right)\]

where

(22)\[\psi_m\left(\frac{z}{L}\right) = 2\ln\frac{1 + x}{2}
+ \ln\frac{1 + x^2}{2} - 2\tan^{-1}x +
\frac{\pi}{2}, \quad x = \left(1 - \beta_m\frac{z}{L}\right)^{1/4},\]

(23)\[\psi_h\left(\frac{z}{L}\right) = \ln\frac{1 + y}{2}, \quad y = \left(1 -
\beta_h\frac{z}{L}\right)^{1/2}.\]

The constants used in ((18)) – ((23)) are [Dye74]

\[\kappa = 0.41,~~\alpha_h =
1,~~\beta_m=16,~~\beta_h=16,~~\gamma_m=5.0,~~\gamma_h=5.0.\]

9.3.2. ABL Wall Function

The equations from the preceeding section can be used to formulate a
wall function boundary condition for simulation of atmospheric
boundary layers. The user-specified inputs to this boundary condition
are: roughness length, \(z_0\), and surface heat flux, \(q_s =
\rho C_p \overline{w^\prime \theta^\prime})_s\). The surface layer profile
model is evaluated for each surface boundary flux integration point;
the wall-normal distance of the “first point off the wall” is taken
to be one fourth of the length of the nearest edge intersecting the
boundary face. The boundary condition is specified weakly through the
imposition of a surface shear stress and surface heat flux.

The procedure for applying the boundary condition is as follows:

	Determine the stratification state of the boundary layer by calculating the sign of the Monin-Obukhov length scale.

	Solve the appropriate profile equation, either ((17)), ((18)), or ((20)), for the friction velocity \(u_\tau\). For the neutral case, \(u_\tau\) can be solved for directly. For the stable and unstable cases, \(u_\tau\) must be solved for iteratively because \(L\) appears in these equations and \(L\) depends on \(u_\tau\).

	The surface shear stress is calculated as \(\tau_s = \rho_s u_\tau^2\). For calculating left-hand-side Jacobian entries, the form (24) is used, where \(\psi^\prime\) is zero for a neutral profile, \(-\gamma_m z/L\) for a stable profile, and \(\psi_h(z/L)\) for an unstable profile. The Jacobian entries follow directly from this form.

	The user specified surface heat flux is applied to the enthalpy equation. Evaluation of surface temperature is not required for the boundary condition specification. However, if surface temperature is required for evaluation of other quantities within the code, the appropriate surface layer temperature profile should be used, either ((19)) or ((21)).

(24)\[\tau_{s_i} = \lambda_s u_{||_i} = \frac{\kappa\rho u_\tau}{\log(z/z_0) - \psi^\prime (z/L)},\]

9.4. Moeng Wall Function

The Monin-Obukhov expressions only truly hold in a mean sense, and are not
necessarily valid when used to specify an instantaneous value for the
surface shear stress in a large eddy simulation. Moeng [Moe84]
developed a local surface stress condition that utilizes
horizontally-averaged quantities, for which the M-O relationships are
assumed to hold. This boundary condition is derived by first assuming
that the local tangential shear stress vector can be written using a
drag law:

(25)\[\mathbf{\tau}_s = C_D u_{{||}_p} \mathbf{u}_{{||}_p}\]

Here, \(C_D\) is the drag coefficient, \(\mathbf{u}_{{||}_p}\) is the
surface-tangential velocity vector evaluated at the near-surface
discretization point, and \(u_{{||}_p}\) denotes the magnitude of this
velocity vector.

An expression for \(\tau_s\) is derived in the Appendix of Moeng [Moe84], by
writing the velocity as the sum of a horizontally averaged mean
component and a fluctuation about this mean:

\[\mathbf{u}_{{||}_p} = \left< \mathbf{u}_{{||}_p} \right> +
\mathbf{u}_{{||}_p}^{\prime\prime}\]

There are two main assumptions in the derivation. The first is that
the instantaneous version of the drag law((25)) is
identical to the horizontally-averaged version. The second assumption
is [1]

\[u_{{||}_p}^{\prime\prime} \mathbf{u}_{{||}_p}^{\prime\prime} \approx
\left< u_{{||}_p}^{\prime\prime} \mathbf{u}_{{||}_p}^{\prime\prime}
\right>\]

After algebraic manipulations, the resulting vector expression is

(26)\[\mathbf{\tau}_s = \left< \mathbf{\tau}_s \right> \left(\frac{u_{{||}_p}
\left< \mathbf{u}_{{||}_p} \right> + \left< u_{{||}_p} \right>
\left[\mathbf{u}_{{||}_p} - \left< \mathbf{u}_{{||}_p} \right>
\right]}{\left< u_{{||}_p} \right> \left< \mathbf{u}_{{||}_p}
\right>}\right)\]

The procedure to calculate the surface stress at a boundary
integration point is as follows.

	Calculate the horizontally-averaged quantities \(\left<u_{{||}_p}\right>$ and $\left<\mathbf{u}_{{||}_p}\right>\).

	Use the M-O velocity profile relationships [Dye74] to calculate an average friction velocity \(u_\tau\).

	Use the relationship ((24)) to calculate the components of \(\left< \mathbf{\tau}_s \right>\).

	Calculate the local surface shear stress using((26)).

Jacobian entries are required to populate the left-hand side matrix
for the terms resulting from ((26)). For convenience, we
write the vector quantities as tensors with subscripts denoting the
vector component indices. We need an expression for the sensitivity
of the shear stress, applied at the boundary face integration point,
to the velocity components at the \(l^{th}\) grid node, or
\(\frac{\partial \tau_{s_i}^{(ip)}}{\partial u_j^(l)}\).

Differentiating ((26)) with respect to \(u_{j}^{(l)}\) gives

(27)\[\frac{\partial \tau_{s_i}^{(ip)}}{\partial u_{j}^{(l)}} =
\frac{\left<\tau_s^{(ip)}\right>_i}{\left<u_{||}^{(ip)}\right>}
\frac{\partial u_{||}^{(ip)}}{\partial u_{j}^{(l)}} +
\frac{\left<\tau_s^{(ip)}\right>_i}{\left<{u_{||}}_i^{(ip)}\right>}
\frac{\partial {u_{||}}_i^{(ip)}}{\partial u_{j}^{(l)}}\]

The first term involves a partial derivative of the tangential
velocity magnitude, while the second term involves the partial
derivative of the tangential velocity component. Applying the chain
rule to the first term gives

(28)\[\frac{\partial u_{||}^{(ip)}}{\partial u_{j}^{(l)}} = \frac{1}{u_{||}^{(ip)}}
{u_{||}}_k^{(ip)} \frac{\partial {u_{||}}_k^{(ip)}}{\partial u_{j}^{(l)}},\]

where summation is implied over the repeated index \(k\). The second
partial derivative in ((27)) is seen to appear also in
((28)). It remains to write an expression for this
derivative, which is done by first writing the tangential velocity
vector at the boundary face integration point in terms of the
Cartesian velocity components:

(29)\[{u_{||}}_i^{(ip)} = (1 - n_i n_j)\delta_{ij} u_i^{(ip)} - n_i n_j (1 -
\delta_{ij}) u_j^{(ip)}\]

with summation over the \(j\) index. The integration point velocity
components are calculated from the face nodes using

(30)\[u_i^{(ip)} = \sum_{l=1}^{N_n} \phi^{(l)}(x_{ip})u_i^{(l)}\]

Substituting ((30)) into ((29)), followed by ((29))
into ((28)) gives

\[\frac{\partial u_{||}^{(ip)}}{\partial u_{j}^{(l)}} = \frac{1}{u_{||}^{(ip)}}
{u_{||}}_k^{(ip)} \sum_{j=1}^3 \sum_{l=1}^{N_n} (1 - n_i n_j)
\delta_{ij} \phi^{(l)}(x_{ip}) - n_i n_j (1 -
\delta_{ij})\phi^{(l)}(x_{ip})\]

9.5. Turbulent Kinetic Energy, \(k_{sgs}\) LES model

When the boundary layer is assumed to be resolved, the natural boundary
condition is a Dirichlet value of zero, \(k_{sgs} = 0\).

When the wall model is used, a standard wall function approach is used
with the assumption of equal production and dissipation.

The turbulent kinetic energy production term is consistent with the law
of the wall formulation and can be expressed as,

(31)\[{P_k}_w = \tau_w \frac{\partial u_{\|}}{\partial y}.\]

The parallel velocity, \(u_{\|}\), can be related to the wall shear
stress by,

(32)\[\tau_w \frac{u^+}{y^+} = \mu \frac{u_{\|}}{Y_p}.\]

Taking the derivative of both sides of Equation (32), and
substituting this relationship into Equation (31) yields,

(33)\[{P_k}_w = \frac{\tau_w^2} {\mu} \frac{\partial u^+}{\partial y^+}.\]

Applying the derivative of the law of the wall formulation,
Equation (2), provides the functional form of
\({\partial u^+ / \partial y^+}\),

(34)\[\frac{\partial u^+}{\partial y^+}
 = \frac{\partial} {\partial y^+}
 \left[\frac{1}{\kappa} \ln \left(Ey^+\right) \right]
 = \frac{1}{\kappa y^+}.\]

Substituting Equation (2) within Equation (33) yields
a commonly used form of the near wall production term,

(35)\[{P_k}_w = \frac{{\tau_w}^2}{\rho\kappa u_{\tau} Y_p}.\]

Assuming local equilibrium, \(P_k = \rho\epsilon\), and using
Equation (35) and Equation (3) provides the form of wall
shear stress is given by,

(36)\[\tau_w = \rho C_\mu^{1/2} k.\]

Under the above assumptions, the near wall value for turbulent kinetic
energy, in the absence of convection, diffusion, or accumulation is
given by,

(37)\[k = \frac{u_\tau^2}{C_\mu^{1/2}}.\]

This expression for turbulent kinetic energy is evaluated at the
boundary faces of the exposed wall boundaries and is area-assembled to
the nodal value for use in a Dirichlet condition.

9.5.1. Turbulent Kinetic Energy and Specific Dissipation SST Low Reynolds Number Boundary conditions

For the turbulent kinetic energy equation, the wall boundary conditions
follow that described for the \(k_{sgs}\) model, i.e., \(k=0\).

A Dirichlet condition is also used on \(\omega\). For this boundary
condition, the \(\omega\) equation depends only on the near-wall
grid spacing. The boundary condition is given by,

\[\omega = \frac{6 \nu} {\beta_1 y^{2}},\]

which is valid for \(y^{+} < 3\).

9.5.2. Turbulent Kinetic Energy and Specific Dissipation SST High Reynolds Number Boundary conditions

The high Reynolds approach uses the law of the wall assumption and also
follows the description provided in the wall modeling section with only
a slight modification in constant syntax,

(38)\[k = \frac{u_{\tau}^{2}}{\sqrt{\beta^*}}.\]

In the case of \(\omega\), an analytic expression is known in the
log layer:

\[\omega = \frac{u_{\tau}} {\sqrt{\beta^*} \kappa y},\]

which is independent of \(k\). Because all these expressions
require \(y\) to be in the log layer, they should absolutely not be
used unless it can be guaranteed that \(y^{+} > 10\), and
\(y^{+} > 25\) is preferable. Automatic blending is not currently
supported.

9.5.3. Solid Stress

The boundary conditions applied are either force provided by a static
pressure,

(39)\[F^n_i = \int \bar{P} n_i dS,\]

or a Dirichlet condition, i.e., \(u_i = u^{spec}_i\), on the
displacement field. Above, \(F^n_i\) is the force for component
\(i\) due to a prescribed [static] pressure.

9.5.4. Intensity

The boundary condition for each intensity assumes a grey, diffuse
surface as,

(40)\[I\left(s\right) = \frac{1}{\pi} \left[\tau \sigma T_\infty^4
 + \epsilon \sigma T_w^4
 + \left(1 - \epsilon - \tau \right) K \right].\]

9.6. Open Boundary Condition

Open boundary conditions require far more care. In general, open bcs are
assembled by iterating faces and the boundary integration points on the
exposed face. The parent element is also required since oftentimes
gradients are used (for momentum). For an open boundary condition the
flow can either leave or enter the domain depending on what the computed
mass flow rate at the exposed boundary integration point is.

9.6.1. Continuity

For continuity, the boundary mass flow rate must also be computed. This
value is stored and used for the other equations that require advection.
The same formula is used for the pressure-stabilized mass flow rate.
However, the local pressure gradient for each boundary contribution is
based on the difference between the interior integration point and the
user-specified pressure which takes on the boundary value. The interior
integration point is determined by linear interpolation. For CVFEM, full
elemental averaging is used while in EBVC discretization, the midpoint
value between the nearest node and opposing node to the boundary
integration point is used. In both discretization approaches,
non-orthogonal corrections are required. This procedure has been very
important for stability for CVFEM tet-based meshes where a natural
non-orthogonality exists between the boundary and interior integration
point.

9.6.2. Momentum

For momentum, the normal component of the stress is subtracted out we
subtract out the normal component of the stress. The normal stress
component for component i can be written as \(F_k n_k n_i\). The
tangential component for component i is simply,
\(F_i - F_k n_k n_i\). As an example, the tangential viscous stress
for component x is,

\[F^T_x = F_x - (F_x n_x + F_y n_y) n_x,\]

which can be written in general component form as,

\[F^T_i = F_i(1-n_i n_i) - \sum_{i!=j} F_j n_i n_j.\]

Finally, the normal stress contribution is applied based on the user
specified pressure,

\[F^N_i = P^{Spec} A_i.\]

For CVFEM, the face gradient operators are used for the thermal stress
terms. For EBVC discretization, from the boundary integration point, the
nearest node (the “Right” state) is used as well as the opposing node
(the “Left” state). The nearest node and opposing node are used to
compute gradients required for any derivatives. This equation follows
the standard gradient description in the diffusion section with
non-orthogonal corrections used. In this formulation, the area vector is
taken to be the exposed area vector. Non-orthogonal terms are noted when
the area vector and edge vector are not aligned.

For advection, If the flow is leaving the domain, we simply advect the
nearest nodal value to the boundary integration point. If the flow is
coming into the domain, we simply confine the flow to be normal to the
open boundary integration point area vector. The value entrained can be
the nearest node or an upstream velocity value defined by the edge
midpoint value.

9.6.3. Mixture Fraction, Enthalpy, Species, \(k_{sgs}\), k and \(\omega\)

Open boundary conditions assume a zero normal gradient. When flow is
entering the domain, the far-field user supplied value is used. Far
field values are used for property evaluations. When flow is leaving the
domain, the flow is advected out consistent with the choice of interior
advection operator.

9.7. Symmetry Boundary Condition

9.7.1. Continuity, Mixture Fraction, Enthalpy, Species, \(k_{sgs}\), k and \(\omega\)

Zero diffusion is applied at the symmetry bc.

9.7.2. Momentum

A symmetry boundary is one that is described by removal of the
tangential stress. Therefore, only the normal component of the stress is
applied:

\[F^n_x = (F_x n_x + F_y n_y) n_x,\]

which can be written in general component form as,

\[F^n_i = F_j n_j n_i.\]

9.8. Periodic Boundary Condition

A parallel multiple-periodic boundary condition is supported. Mappings
are created between master/slave surface node pairs. The node pairs are
obtained from a parallel search and are expected to be unique. The node
pairs are used to map the slave global id to that of the master. This
allows the linear system to include matrix rows for only a subset of the
overall set of nodes. Moreover, a periodic assembly for assembled
quantities is managed via: \(m+=s\) and \(s=m\), where \(m\)
and \(s\) are master/slave nodes, respectively. For each parallel
assembled quantity, e.g., dual volume, turbulence quantities, etc., this
procedure is used. Periodic boxes and periodic couette and channel flow
have been simulated in this code base. Tow forms of parallel searches
exist and are supported (one through the Boost TPL and another through
the STK Search module).

9.9. Non-conformal Boundary Condition

A surface-based approach based on a DG method has been discussed in the
2010 CTR summer proceedings by Domino,

 10. Overset

10. Overset

Nalu supports simulations using an overset mesh methodology to model complex
geometries. Currently the codebase supports two approaches to determine overset
mesh connectivity:

	Overset mesh hole-cutting algorithm based on native STK search routines, and

	Hole-cutting and donor/reception determination using the TIOGA [https://github.com/jsitaraman/tioga] (Topology Independent Overset Grid
Assembly) TPL.

The native STK based overset grid assembly (OGA) requires no additional
packages, but is limited to simple geometries where the search and hole-cutting
procedure works only simple rectangular boundaries (for the inner mesh) that are
aligned along the major axes. On the other hand, TIOGA based hole cutting is
capable of performing overset grid assembly on arbitrary mesh geometries and
orientation, supports generalized mesh motion, and can determine donor/recipient
status with multiple meshes overlapping in the same space. A specific use-case
for the need to perform OGA on multiple meshes is the simulation of a wind
turbine in an atmospheric boundary layer, where the turbine blade, nacelle, and
the background ABL mesh might all overlap near the rotor hub.

10.1. Overset Grid Assembly using Native STK Search

The overset descriptions begins with the basic background mesh (block 1)
and overset mesh (block 2) depicted in Figure Fig. 10.1. Also
shown in this figure is the reduction outer surface of block 2 (light
blue). Elements within this reduced overset block will be determined by
a parallel search. The collection of elements within this bounding box
will be skinned to form a surface on which orphan nodes are placed.
Elements within this volume are set in a new internally managed inactive
block. These mesh entities are fully removed from the overall matrix for
each dof. Elements within this volume are provided a masking integer
element varibale of unity to select out of the visualizattion tool.
Therefore, orphan nodes live at the external boundary of block 2 and
along the reduced surface. The parallel search provides the mapping of
orphan node and owning element from which the state can be
constructed.

[image: ../../_images/oversetBlockOneTwo.png]
Fig. 10.1 Two-block use case describing background mesh (block 1) and overset
mesh (block 2).

After the full search and overset initialization, this simple example
yields the original block 1 and 2, the newly created inactive block 3,
the original surface of the overset mesh and the new skinned surface
(101) of the inactive block (Figure Fig. 10.2).

[image: ../../_images/oversetBlockOneTwoCut.png]
Fig. 10.2 Three-block and two surface, post over set initialization.

A simple heat conduction example is provided in Figure Fig. 10.3 where
the circular boundary is set at a temperature of 500 with all external
boundaries set to adiabatic.

[image: ../../_images/oversetHC.png]
Fig. 10.3 A simple heat conduction example providing the overset mesh and donor
orphan nodes.

As noted before, every orphan node lies within an owning element.
Sufficient overlap is required to make the system well posed. A fully
implicit procedure is provided by writing the orphan node value as a
linear constraint of the owning element (Figure Fig. 10.4).

[image: ../../_images/oversetNodes.png]
Fig. 10.4 Orphan nodes for background and overset mesh for which a fully
implicit constraint equation is written.

For completeness, the constraint equation for any dof \(\phi^o\) is
simply,

(1)\[\phi^o - \sum N_k \phi_k = 0.\]

As noted, full sensitivities are provided in the linear system by
constructing a row entry with the columns of the nodes within the owning
element and the orphan node itself.

Finally, a mixed hex/tet mesh configuration example (overset mesh is tet
while background is hex) is provided in Figure Fig. 10.5.

[image: ../../_images/oversetSphere.png]
Fig. 10.5 Flow past a three-dimensional sphere using a hybrid topology
(hex/tet) mesh configuration.

10.2. Overset Grid Assembly using TIOGA

Topology Independent Overset Grid Assembler (TIOGA) is an open-source
connectivity package that was developed as an academic/research counterpart for
PUNDIT (the overset grid assembler used in NASA/Army CREATE A/V program and
HELIOS). The base library has been modified to remove the limitation where each
MPI rank could only own one mesh block. The code has been extended to handle
multiple mesh blocks per MPI rank to support Nalu’s mesh decomposition
strategies.

TIOGA uses a different nomenclature for overset mesh assembly. A brief
description is provided here to familiarize users with the differences in
nomenclature used in the previous section. When determining overset
connectivity, TIOGA ends up assigning IBLANK values to the nodes in a mesh.
The IBLANK field is an integer field that determines the status of the node
which can be one of three states:

field point

A field point is a node that behaves as a normal mesh point, i.e., the
equations are solved on these nodes and the linear system assembly proceeds as
normal. The field points are indicated by an IBLANK value of 1.

fringe point

A fringe point is a receptor on the receving mesh where the solution field is
mapped from the donor element. A fringe point is indicated by an IBLANK
value of -1. Fringe points are how information is transferred between the
participating meshes. Note that fringe points are referred to as orphan
points in the STK based overset description.

hole point

A hole point is a node on a mesh that occurs inside a solid body being modeled
in another mesh. These points have no valid solution for the equations solved
and should not participate in the linear system.

In addition to the IBLANK status, the following terms are useful when using
TIOGA

donor element

The element that is used to interpolate field data from donor mesh to a
recipient mesh. While TIOGA provides flow interpolation routines, the current
implementation in Nalu uses the MasterElement classes in Nalu to maintain
consistency between the STK and the TIOGA overset implementations.

orphan points

The term orphan point is used differently in TIOGA than the STK based overset
implementation. TIOGA refers to nodes as orphan points when there it cannot
find a suitable donor element for those nodes that are considered fringe
points. This can happen when the nodes on the enclosing element are themselves
labeled fringe points.

Unlike the STK based hole cutting approach, that uses predefined bounding boxes
to determine donor/receptor locations, TIOGA uses the element volume as the
metric to determine the field and fringe points. The high level hole cutting
algorithm can be described in the following steps:

	Determine and tag hole points that are fully enclosed within solid bodies,
tag neighboring points to be fringe points.

	Determine and flag all mandatory fringe points, e.g., embedded boundaries of
interior meshes.

	Determine fringe locations for the exterior meshes where information is
transferred back from interior meshes to the exterior/background mesh.

In the current integration, only the hole-cutting and donor/receptor
information is processed by the TIOGA library. The linear system assembly,
specifically the constraint equations for the fringe points are managed by the
same classes that are used with the native STK hole-cutting approach.

Figure Fig. 10.6 shows the field and fringe points as
determined by TIOGA during the hole-cutting process. The central white region
shows the mesh points of the interior mesh. The salmon colored region shows the
overlapping field points where the flow equations are solved on both
participating meshes. The green-ish boundary shows the mandatory fringe points
for the interior mesh along its outer boundary. The interior boundary of the
overlap region are the fringe points for the background mesh where information
is transferred from the interior mesh. The extent of the overlap region is
determined by the number of element layers necessary to ensure adequate
separation between the fringe boundaries on the participating meshes.

[image: ../../_images/rotbox_overset.png]
Fig. 10.6 TIOGA overset hole cutting for a rotated internal mesh configuration showing
the field and fringe locations.

Figure tioga-overset-cyl shows the resulting overset assembly for
cylinder mesh and a background mesh with an intermediate refinement zone. The
hole points (inside the cylinder) have been removed from the linear system for
both the intermediate and background mesh. The magenta region shows the overlap
of field points of the cylinder and the intermediate mesh. And the yellow region
shows the overlap between the background and the intermediate mesh.

[image: ../../_images/cylinder_overset.png]
Fig. 10.7 Overset mesh configuration for simulating flow past a cylinder using a three
mesh setup: near-body, body-fitted cylinder mesh, intermediate refined mesh,
and coarse background mesh.

Figures Fig. 10.8 and Fig. 10.9 shown the
velocity and vorticity contours for the flow past a cylinder simulated using the
overset mesh methodology with TIOGA overset connectivity.

[image: ../../_images/tioga_cyl_velocity.png]
Fig. 10.8 Velocity field for a flow past cylinder simulating using an overset mesh
methodology with TIOGA mesh connectivity approach.

[image: ../../_images/tioga_cyl_vorticity.png]
Fig. 10.9 Vorticity field for a flow past cylinder simulating using an overset mesh
methodology with TIOGA mesh connectivity approach.

 11. Property Evaluations

11. Property Evaluations

Property specification is provided in the material model section of the
input file. Unity Lewis number assumptions for diffusive flux
coefficients for mass fraction and enthalpy are assumed.

11.1. Density

At present, property evaluation for density is given by constant, single
mixture fraction-based, HDF5 tables, or ideal gas. For ideal gas, we
support a non-isothermal, non-uniform and even an acoustically
compressible form.

11.2. Viscosity

Property evaluation for viscosity is given by constant, single mixture
fraction-based, simple tables or Sutherland’s three coefficient as a
function of temperature. When mixtures are used, either by reference or
species transport, only a mass fraction-weighed approach is used.

11.3. Specific Heat

Property evaluation for specific heat is either constant of two-band
standard NASA polynomials; again species composition weighting are used
(either transported or reference).

11.4. Lame Properties

Lame constants are either of type constant or for use in mesh
motion/smoothing geometric whereby the values are inversely proportional
to the dual volume.

 12. Coupling Approach

12. Coupling Approach

The classic low Mach implementation uses an incremental approximate
pressure projection scheme in which nonlinear convergence is obtained
using outer Picard loops. Recently a full study on coupling approaches
has been conducted using ASC Algorithm funds. In this project, coupling
methods ranging from fully implicit, fully coupled equal order
pressure/velocity interpolation with pressure stabilization to explicit
advection/diffusion pressure projection schemes. A brief summary of the
results follows.

Specifically, five algorithms were considered and are as follows:

	A monolithic scheme in which advection and diffusion are implicit using full analytical sensitivities,

	Monolithic momentum solve with implicit advection/diffusion in the context of a fourth order stabilized incremental pressure projection scheme,

	Monolithic momentum solve with explicit advection; implicit diffusion in the context of a fourth order stabilized incremental pressure projection scheme,

	Segregated momentum solve with implicit advection/diffusion in the context of a fourth order stabilized incremental pressure porjectin scheme, and

	Explicit momementum advection/diffusion predictor/corrector scheme in the context of a second order stabilized pressure-free approximate projection scheme.

Each of the above algorithms has been run in the context of a transient
uniform flow low Mach flow. The emphasis of this project is transient
flows. As such, the numbers below are to be cast in this context. If
steady flows are desired, conclusions may be different. The slowdown of
each implementation is relative to the core low Mach algorith, i.e.,
algorithm (4) above. Numbers less than unity represent a speed-up
whereas numbers greater than unity represent a slow down: 1) 3.4x, 2)
1.2x, 3) 0.6x, 4) 1.0x, 5) 0.7x.

The above runs were made using a time step that corresponded to a CFL of
slightly less than unity. In this particlar flow, a transitionally
turbulent open jet, the diffusion time scale stability limit was not a
factor. In other words, there existed no detailed boundary layer at the
wall bounded flow at the ground plane. Results for a Reynolds number of
\(45000\) back step also are similar to the above jet results.

In general, although a mixture of implicit diffusion and explicit
advection seem to be the winning combination, this scheme is very
sensitive to time step and must be used by an educated user. In general,
the conclusions are, thus far, that the standard segregated pressure
projection scheme is preferred.

The algorithm implemented in Nalu is a fourth order approximate
projection scheme with monolithic momentum coupling. Evaluation of a
predictor/corrector approach for reating flow is anticipated in the late
FY15 time frame.

12.1. Errors due to Splitting and Stabilization

As noted in many of our papers, the error in the above method can be
written in block form (let’s relax the variable density nuance - or
simple fold these extra terms into our operators). Here we specifically
partition error into both splitting (the pressure projection aspect of
the alg that factorizes the fully coupled system) and pressure
stabilization. Note that when we run fully coupled simulation with the
same pressure stabilization algorithm, the answers converge to the same
result.

Below, also forgive the specific definitions of \(\tau\). In
general, they represent a choice of projection and stabilization time
scales. Finally, the Laplace operator, e.g., \({\bf L_2}\), have the
\(\tau\)‘s built into them.

(1)\[\begin{split}\left[
 \begin{array}{lr}
 {\bf A} & {\bf G} \\
 {\bf D} & {\bf 0}
 \end{array}
 \right]
%
 \left[
 \begin{array}{l}
 {\bf u}^{n+1} \\
 p^{n+1}
 \end{array}
 \right] =
%
 \left[
 \begin{array}{l}
 {\bf f} \\
 0
 \end{array}
 \right] +
 \left[
 \begin{array}{l}
 ({\bf I}- \tau {\bf A }){\bf G}(p^{n+1}-p^n) \\
 \epsilon({\bf L_i},\tau_i, {\bf D}, {\bf G})
 \end{array}
 \right]\end{split}\]

where the error term that appears for the discrete continuity solve is
given by,

(2)\[\begin{split}\epsilon({\bf L_i},\tau_i,{\bf D},{\bf G}) =
 (({\bf L_1}-{\bf D}\tau_3{\bf G}) \\
-({\bf L_2}-{\bf D}\tau_2{\bf G}))(p^{n+1}-p^{n}) \\
+ ({\bf L_2}-{\bf D}\tau_2{\bf G})p^{n+1}\end{split}\]

For the sake of this write-up, let \({\bf L_1} = {\bf L_2}\) and
\(\tau_2 = \tau_3\).

 13. Time discretization

13. Time discretization

Time integrators range from simple backward Euler or a second order
three state scheme, BDF2.

A general time discretization approach can be written as,

\[\int \frac{\partial \rho \phi }{\partial t} dV = \int \frac{ (\gamma_1 \rho^{n+1} \phi^{n+1}
+ \gamma_2 \rho^{n} \phi^{n} + \gamma_3 \rho^{n-1} \phi^{n-1})} {\Delta t} dV\]

where \(\gamma_i\) represent the appropriate factors for either
Backward Euler or a three-point BDF2 scheme. In both discretization
approaches, the value for density and other dofs are evaluated at the
node. As such, the time contribution is a lumped mass scheme with the
volume simply the dual volume. The topology over one loops to assemble
system is simply the node. Although CVFEM affords the use of a
consistent mass matrix, this scheme is not used at present.

 14. Multi-Physics

14. Multi-Physics

The equation set required to support the energy sector is already
represented as a multiphysics application. However, in some common cases
of coupling including conjugate heat transfer and coupling to
participating media radiation, an operator split method may be
preferred. The general concept is to define multiple Nalu Realms that
each own the mesh on which the particular physics is solved. Surface-
and volume-based couplings are supported through linear interpolation of
the coupling parameters.

A typical CHT application involves the coupling of a thermal response
and fluid transport. The coupling occurs between the surface that shares
the thermal equation and static enthalpy equation. Moreover, coupling to
a PMR solve is a volume-based coupling. Multiple Realms are supported
with multiple transfers.

In Nalu, the method to achieve coupling in CHT or RTE coupled systems is
through the usage of the STK Transfer module. This allows for linear
interpolation between disparate meshes. Advanced conservative transfers
are being evaluated, however, are not yet implemented in the code base.
In general, the STK Transfer interface allows for this design point.

For FSI, the usage of the transfer module is also expected.

 15. Actuator Wind Turbine Aerodynamics Modeling

15. Actuator Wind Turbine Aerodynamics Modeling

15.1. Theory

Wind turbine rotor, tower, and nacelle aerodynamic effects can be
modeled using actuator representations. Compared to resolving the
geometry of the turbine, actuator modeling alleviates the need for a
complex body-fitted meshes, can relax time step restrictions, and
eliminates the need for turbulence modeling at the turbine surfaces.
This comes at the expense of a loss of fine-scale detail, for example,
the boundary layers of the wind turbine surfaces are not resolved.
However, actuator methods well represent wind turbine wakes in the mid
to far downstream regions where wake interactions are important.

Actuator methods usually fall within the classes of disks, lines,
surface, or some blend between the disk and line (i.e., the swept
actuator line). Most commonly, the force over the actuator is computed,
and then applied as a body-force source term, \(f_i\), to the
Favre-filtered momentum equation

(1)\[\begin{split} \int \frac{\partial \bar{\rho} \tilde{u}_i} {\partial t} {\rm d}V
 + \int \bar{\rho} \tilde{u}_i \tilde{u}_j n_j {\rm d}S
 + \int \bar{P} n_i {\rm d}S = \int \bar{\tau}_{ij} n_j {\rm d}S
 + \int \tau_{u_i u_j} n_j {\rm d}S
 + \int \left(\bar{\rho} - \rho_{\circ} \right) g_i {\rm d}V \\
 + \int f_i {\rm d}V,\end{split}\]

The body-force term \(f_i\) is volumetric and is a force per unit
volume. The actuator forces, \(F'_i\), are not volumetric. They
exist along lines or on surfaces and are force per unit length or area.
Therefore, a projection function, \(g\), is used to project the
actuator forces into the fluid volume as volumetric forces. A simple and
commonly used projection function is a uniform Gaussian as proposed by
S{o}rensen and Shen [SrensenS02],

\[g(\vec{r}) = \frac{1}{\pi^{3/2} \epsilon^3} e^{-\left(\left| \vec{r} \right|/\epsilon \right)^2},\]

where \(\vec{r}\) is the position vector between the fluid point of
interest to a particular point on the actuator, and \(\epsilon\) is
the width of the Gaussian, which determines how diluted the body force
become. As an example, for an actuator line extending from \(l=0\)
to \(L\), the body force at point \((x,y,z)\) due to the line is
given by

(2)\[f_i(x,y,z) = \int_0^L g\left(\vec{r}\left(l\right)\right) F'_i\left(l\right) \: \textrm{d} l.\]

Here, the projection function’s position vector is a function of
position on the actuator line. The part of the line nearest to the point in
the fluid at \((x,y,z)\) has most weight.

The force along an actuator line or over an actuator disk is often
computed using blade element theory, where it is convenient to discretize
the actuator into a set of elements. For example, with the actuator line,
the line is broken into discrete line segments, and the force at the center
of each element, \(F_i^k\), is computed. Here, \(k\) is the actuator
element index. These actuator points are independent of the fluid mesh.
This set of point forces is then projected onto the fluid mesh using any
desired projection function, \(g(\vec{r})\), as described above.
This is convenient because the integral given in Equation
(2) can become the summation

(3)\[f_i(x,y,z) = \sum_{k=0}^N g(\vec{r}^k) F_i^k.\]

This summation well approximates the integral given in Equation
(2) so long as the ratio of actuator element size to
projection function width \(\epsilon\) does not exceed a certain threshold.

15.2. Design

The initial actuator capability implemented in Nalu is focused on the actuator line algorithm. However, the class hierarchy is designed with the potential to add other actuator source terms such as actuator disk, swept actuator line and actuator surface capability in the future. The ActuatorLineFAST class couples Nalu with the third party library OpenFAST for actuator line simulations of wind turbines. OpenFAST (https://nwtc.nrel.gov/FAST), available from https://github.com/OpenFAST/openfast, is a aero-hydro-servo-elastic tool to model wind turbine developed by the National Renewable Energy Laboratory (NREL). The ActuatorLineFAST class will help Nalu effectively act as an inflow module to OpenFAST by supplying the velocity field information.

We have tested actuator line implementation to be reasonably scalable. Actuators require searches and parallel communication of blade element velocities and forces, so our implementation should be scalable. Scalability is affected by the number of actuator turbines, the actuator element density, and the resolution of the mesh surrounding the actuators (i.e., the number of mesh elements that will receive body force). Further testing on scalability is underway with the demonstration of this capability to simulate the OWEZ wind farm.

The actuator line implementation allows for flexible blades that are not necessarily straight (prebend and sweep). The current implementation requires a fixed time step when coupled to OpenFAST, but allows the time step in Nalu to be an integral multiple of the OpenFAST time step. Initially, a simple time lagged FSI model is used to interface Nalu with the turbine model in OpenFAST:

	The velocity at time step at time step ‘n’ is sampled at the actuator points and sent
to OpenFAST,

	OpenFAST advances the turbines upto the next Nalu time step ‘n+1’,

	The body forces at the actuator points are converted to the source terms of the momentum
equation to advance Nalu to the next time step ‘n+1’.

We are currently working on advanced FSI algorithms along with verification using an MMS approach.

The actuator implementation is flexible enough to incorporate a variety of future wind turbine technology capabilities. For example, it is possible that the nacelle may actively tilt for wake steering. The actuator capability is also able to handle a variety of turbines types within one simulation. The current capability allows the modeling of not only the rotor with actuators, but also the tower. However, an aerodynamic model still needs to be implemented for the nacelle.

15.3. Testing

We need a set of tests to make sure the actuator is working properly. Here are some of the proposed tests:

	Momentum balance: set up a test that compares the change in fluid
momentum to the momentum extracted by the actuator model.

	Velocity/force/position transfer: set up a test that assures that the
velocity, forces, and blade position being passed between Nalu and
FAST is consistent.

	Lifting line theory comparison: does it make sense to have a test in
which a stationary actuator line wing with elliptic chord is placed
in the flow and make sure that the results are consistent with
theory? We won’t get back the exact theoretical answer because
lifting line theory is pretty idealized, but maybe a good check?

15.4. Implementation

	During the load phase - the turbine data from the yaml file is read and stored in an object of the fast::fastInputs class

	During the initialize phase - The processor containing the hub of each turbine is found through a search and assigned to be the one controlling OpenFAST for that turbine. All processors controlling \(> 0\) turbines initialize FAST, populate the map of ActuatorLinePointInfo and initialize element searches for all the actuator points associated with the turbines. For every actuator point, the elements within a specified search radius are found and stored in the corresponding object of the ActuatorLinePointInfo class.

	Elements are ghosted to the owning point rank. We tried the opposite approach of ghosting the actuator points to the processor owning the elements. The second approach was found to peform poorly compared to the first method.

	During the execute phase called every time step, we sample the velocity at each actuator point and pass it to OpenFAST. All the OpenFAST turbine models are advanced upto Nalu’s next time step to get the body forces at the actuator points. We then iterate over the ActuatorLinePointInfoMap to assemble source terms:
	For each element e within the search radius of an actuator point k, the effective lumped body force is calculated at the center of the element by multiplying the actuator force with the Gaussian projection at the center of the element as \(F_e^k = g(\vec{r}_e^k) \, F_i^k\).

	The assemble_source_to_nodes function then distributes the force \(F_e\) at the center of an element to a node \(i\) surrounding it proportional to the subcontrol volume corresponding to that node as \(F_e^i = F_e \; (V_{scv}^i / V_e)\), where \(V_e\) is the volume of the element.

15.5. Restart capability

While Nalu itself supports a full restart capability, OpenFAST may not support a full restart capability for specific use cases. To account for this, the OpenFAST - C++ API supports two kinds of restart capabilities. To restart a Nalu - OpenFAST coupled simulation one must set t_start in the line commands to a positive non-zero value and set simStart to either trueRestart or restartDriverInitFAST. Use trueRestart when OpenFAST supports a full restart capability for the specific use case. restartDriverInitFAST will start OpenFAST from t=0 again for all turbines and run upto the restart time and then run the coupled Nalu + OpenFAST simulation normally. During the Nalu - OpenFAST he sampled velocity data at the actuator nodes is stored in a hdf5 file at every OpenFAST time step and then read back in when using the restart.

The command line options for the actuator line with coupling to OpenFAST looks as follows for two turbines:

actuator:
type: ActLineFAST
search_method: boost_rtree
search_target_part: Unspecified-2-HEX

n_turbines_glob: 2
dry_run: False
debug: False
t_start: 0.0
simStart: init # init/trueRestart/restartDriverInitFAST
t_max: 5.0
n_every_checkpoint: 100

Turbine0:
 procNo: 0
 num_force_pts_blade: 50
 num_force_pts_tower: 20
 epsilon: [5.0, 5.0, 5.0]
 turbine_base_pos: [0.0, 0.0, -90.0]
 turbine_hub_pos: [0.0, 0.0, 0.0]
 restart_filename: "blah"
 FAST_input_filename: "Test01.fst"
 turb_id: 1
 turbine_name: machine_zero

Turbine1:
 procNo: 0
 num_force_pts_blade: 50
 num_force_pts_tower: 20
 epsilon: [5.0, 5.0, 5.0]
 turbine_base_pos: [250.0, 0.0, -90.0]
 turbine_hub_pos: [250.0, 0.0, 0.0]
 restart_filename: "blah"
 FAST_input_filename: "Test02.fst"
 turb_id: 2
 turbine_name: machine_one

 16. Topological Support

16. Topological Support

The currently supported elements are as follows: hex, tet, pyramid,
wedge, quad, and tri. In general, hybrid meshes are fully supported for
the edge-based scheme. For CVFEM, hybrid meshes are also supported,
however, wedge and pyramid elements are not permitted at exposed open or
symmetry boundaries. The remedy to the CVFEM constraint is to simply
implement the exposed face gradient operators.

 17. Adaptivity

17. Adaptivity

Adaptivity is supported through usage of the Percept module. However,
this code base has not yet been deployed to the open sector. As such,
ifdef guards are placed within the code base. A variety of choices exist
for the manner by which hanging nodes are removed in a vertex-centered
code base.

A typical h-adapted patch of elements is shown in
Figure Fig. 17.1. The “hanging nodes” do not have control volumes
associated with them. Rather, they are constrained to be a linear
combination of the two parent edge nodes. There is no element assembly
procedure to compute fluxes for the “hanging sub-faces” associated with
the hanging nodes that occur along the parent-child element boundary.

[image: ../../_images/hadapt.pdf]
Fig. 17.1 Control volume definition on an h-adapted mesh with hanging nodes.
(Four-patch of parent elements with refinement in bottom-right
element.)

In general, for a vertex-centered scheme, the h-adaptive scheme is
driven at the element level. Refinement occurs within the element and
the topology of refined elements is the same as the parent element.

Aftosmis [Aft94] describes a vertex-centered
finite-volume scheme on unstructured Cartesian meshes. A transitional
set of control volumes are formed about the hanging nodes, shown in
Figure Fig. 17.2. on unstructured meshes. This approach would
require a series of specialized master elements to deal with the
different transition possibilities.

[image: ../../_images/hadapt2.pdf]
Fig. 17.2 Control volume definition on an h-adapted mesh with transition
control volumes about the hanging nodes. (Four-patch of parent
elements with refinement in bottom-right element.)

Kallinderis [KB89] describes a
vertex-centered finite-volume scheme on unstructured quad meshes.
Hanging nodes are treated with a constraint condition. The flux
construction for a node on a refinement boundary is based on the
unrefined parent elements, leading to a non-conservative scheme.

Kallinderis [KV93] also describes a
vertex-centered finite-volume scheme on unstructured tetrahedral meshes.
Hanging nodes are removed by splitting the elements on the “unrefined”
side of the refinement boundary.
Mavriplis [Mav00] uses a similar technique,
however, extends it to a general set of heterogeneous elements, shown in
Figure Fig. 17.3.

[image: ../../_images/hadapt3.pdf]
Fig. 17.3 Control volume definition on a heterogeneous h-adapted mesh with no
hanging nodes. (Four-patch of parent elements with refinement in
bottom-right element and splitting in adjacent parent elements.)

The future deployment of Percept will use the procedure of Mavriplis
whereby hanging nodes are removed by neighbor topological changes. A
variety of error indicators exists and a prototyped error transport
equation appraoch for the one-equation \(k^{sgs}\) model has been
tested for classic jet-in-crossflow configurations.

17.1. Prolongation and Restriction

Nodal variables are interpolated between levels of the h-adapted mesh
hierarchy using the traditional prolongation and restriction operators
defined over an element. The prolongation operation is used to compute
values for new nodes that arise from element sub-division. The parent
element shape functions are used to interpolate values from the parent
nodes to the sub-divided nodes.

Prolongation and restriction operators for element variables and face
variables are required to maintain mass flow rates that satisfy
continuity. When adaptivity takes place, a code option to reconstruct
the mass flow rates must be used. Whether or not a Poisson system must
be created has been explored. More work is required to understand the
nuances associated with prolongation, specifically with respect to
possible dispersion errors.

 18. Code Abstractions

18. Code Abstractions

The Nalu code base is a c++ code-base that significantly leverages the
Sierra Toolkit and Trilinos infrastructure. This section is designed to
provide a high level overview of the underlying abstractions that the
code base exercises. For more detailed code information, the developer
is referred to the Trilinos project (github.com). In the sections that
follow, only a high level overview is provided.

The developer might also find useful examples in the NaluUnit github
repository as it contains a number of specialized implementations that
are very small in nature. In fact, the Nalu code base emerged as a small
testbed unit test to evaluate the STK infrastructure. Interestingly, the
first “algorithm” implementation was a simple \(L_2\) projected
nodal gradient. This effort involved reading in a mesh, registering a
nodal (vector) field, iterating elements and exposed surfaces to
assemble the projected nodal gradient to the nodes of the mesh (in
parallel). When evaluating kokkos, this algorithm was also used to learn
about the parallel NGP abstraction provided.

18.1. Sierra Toolkit Abstractions

Consider a typical mesh that consists of nodes, sides of elements and
elements. Such a mesh, when using the Exodus standard, will liekly be
represented by a collection of “element blocks”, “sidesets” and,
possibly, “nodesets”. The definition of the mesh (generated by the user
through commercial meshing packages such as pointwise or ICM-CFD) will
provide the required spatial definitions of the volume physics and the
required boundary conditions.

An element block is a homegeneous collection of elements of the same
underlying topology, e.g., HEXAHEDRAL-8. A sideset is a set of exposed
element faces on which a boundary condition is to be applied. Finally, a
nodeset is a collection of nodes. In general, nodesets are possibly
output entities as the code does not exercise enforcing physics or
boundary conditions on nodesets. Although Nalu supports an edge-based
scheme, an edge, which is an entity connecting two nodes, is not part of
the Exodus standard and must be generated within the STK infrastructure.
Therefore, a particular discretization choice may require
stk::mesh::Entity types of element, face (or side), edge and
node.

Once the mesh is read in, a variety of routine operations are generally
required. For example, a low-Mach physics equation set may want to be
applied to block_1 while inflow, open, symmetry, periodic and
wall boundary conditions can be applied to a variety of sidesets. For
example, surface_1 might be of an “inflow” type. Therefore, the
high level set of requirements on a mesh infrastructure might be to
allow one to iterate parts of the mesh and, in the end, assemble a
quantity to a nodal or elemental field.

18.1.1. Meta and Bulk Data

Meta and Bulk data are simply STK containers. MetaData is used to
extract parts, extract ownership status, determine the side rank, field
declaration, etc. BulkData is used to extract buckets, extract upward
and downward connectivities and determine node count for a given entity.

18.1.2. Parallel Rules

In STK, elements are locally owned by a single rank. Elements may be
ghosted to other parallel ranks through STK custom ghosting. Exposed
faces are locally owned by the lower parallel rank. Nodes are also
locally owned by the lower parallel rank and can also be shared by all
parallel ranks touching them. Edges and internal faces
(element:face:element connectivity) have the same rule of locally
owned/shared and can also be ghosted. Again, edges and internal faces
must be created by existing STK methods should the physics algorithm
require them. In Nalu, the choice of element-based or edge-based is
determined within the input file.

18.1.3. Connectivity

In an unstructured mesh, connectivity must be built from the mesh and
can not be assumed to follow an assumed “i-j-k” data layout, i.e.,
structured. In general, one speaks of downward and upward relationships
between the underlying entities. For example, if one has a particular
element, one might like to extract all of the nodes connected to the
element. Likewise, this represents a common opporation for faces and
edges. Such examples are those in which downward relationships are
required. However, one might also have a node and want to extract all of
the connected elements to this node (consider some sort of patch
recovery algorithm). STK provides the ability to extract such
connectivities. In general, full downward and upward connectivities are
created.

For example, consider an example in which one has a pointer to an
element and wants to extract the nodes of this element. At this point,
the developer has not been exposed to abstractions such as buckets,
selectors, etc. As such, this is a very high level overview with more
details to come in subsequent sections. Therefore, the scope below is to
assume that from an element-k of a “bucket”, b[k] (which is a collection
of homogeneous RANK-ed entities) we will extract the nodes of this
element using the STK bulk data.

// extract element from this bucket
stk::mesh::Entity elem = b[k];

// extract node relationship from bulk data
stk::mesh::Entity const * node_rels = bulkData_.begin_nodes(elem);
int num_nodes = bulkData_.num_nodes(elem);

// iterate nodes
for (int ni = 0; ni < num_nodes; ++ni) {
 stk::mesh::Entity node = node_rels[ni];

 // set connected nodes
 connected_nodes[ni] = node;

 // gather some data, e.g., density at state Np1,
 // into a local workset pointer to a std::vector
 p_density[ni] = *stk::mesh::field_data(densityNp1, node);
}

18.1.4. Parts

As noted before, a stk::mesh::Part is simply an abstraction that
describes a set of mesh entities. If one has the name of the part from
the mesh data base, one may extract the part. Once the part is in hand,
one may iterate the underlying set of entities, walk relations, assemble
data, etc.

The following example simply extracts a part for each vector of names
that lives in the vector targetNames and provides this part to
all of the underlying equations that have been created for purposes of
nodal field registration. Parts of the mesh that are not included within
the targetNames vector would not be included in the field
registration and, as such, if this missing part was used to extract the
data, an error would occur.

for (size_t itarget = 0; itarget < targetNames.size(); ++itarget) {
 stk::mesh::Part *targetPart = metaData_.get_part(targetNames[itarget]);

 // check for a good part
 if (NULL == targetPart) {
 throw std::runtime_error("Trouble with part " + targetNames[itarget]);
 }
 else {
 EquationSystemVector::iterator ii;
 for(ii=equationSystemVector_.begin(); ii!=equationSystemVector_.end(); ++ii)
 (*ii)->register_nodal_fields(targetPart);
 }
}

18.1.5. Selectors

In order to arrive at the precise parts of the mesh and entities on
which one desires to operate, one needs to “select” what is useful. The
STK selector infrastructure provides this.

In the following example, it is desired to obtain a selector that
contains all of the parts of interest to a physics algorithm that are
locally owned and active.

// define the selector; locally owned, the parts I have served up and active
stk::mesh::Selector s_locally_owned_union = metaData_.locally_owned_part()
 & stk::mesh::selectUnion(partVec_)
 & !(realm_.get_inactive_selector());

18.1.6. Buckets

Once a selector is defined (as above) an abstraction to provide access
to the type of data can be defined. In STK, the mechanism to iterate
entities on the mesh is through the stk::mesh::bucket interface.
A bucket is a homogeneous collection of stk::mesh::Entity.

In the below example, the selector is used to define the bucket of
entities that are provided to the developer.

// given the defined selector, extract the buckets of type ``element''
stk::mesh::BucketVector const& elem_buckets
 = bulkData_.get_buckets(stk::topology::ELEMENT_RANK,
 s_locally_owned_union);

// loop over the vector of buckets
for (stk::mesh::BucketVector::const_iterator ib = elem_buckets.begin();
 ib != elem_buckets.end() ; ++ib) {
 stk::mesh::Bucket & b = **ib ;
 const stk::mesh::Bucket::size_type length = b.size();

 // extract master element (homogeneous over buckets)
 MasterElement *meSCS = sierra::nalu::get_surface_master_element(b.topology());

 for (stk::mesh::Bucket::size_type k = 0 ; k < length ; ++k) {

 // extract element from this bucket
 stk::mesh::Entity elem = b[k];

 // etc...
 }
}

The look-and-feel for nodes, edges, face/sides is the same, e.g.,

\(\bullet\) for nodes:

// given the defined selector, extract the buckets of type ``node''
stk::mesh::BucketVector const& node_buckets
 = bulkData_.get_buckets(stk::topology::NODE_RANK,
 s_locally_owned_union);

// loop over the vector of buckets

\(\bullet\) for edges:

// given the defined selector, extract the buckets of type ``edge''
stk::mesh::BucketVector const& edge_buckets
 = bulkData_.get_buckets(stk::topology::EDGE_RANK,
 s_locally_owned_union);

// loop over the vector of buckets

\(\bullet\) for faces/sides:

// given the defined selector, extract the buckets of type ``face/side''
stk::mesh::BucketVector const& face_buckets
 = bulkData_.get_buckets(metaData_.side_rank(),
 s_locally_owned_union);

// loop over the vector of buckets

18.1.7. Field Data Registration

Given a part, we would like to declare the field and put the field on
the part of interest. The developer can register fields of type
elemental, nodal, face and edge of desired size.

\(\bullet\) nodal field registration:

void
LowMachEquationSystem::register_nodal_fields(
 stk::mesh::Part *part)
{
 // how many states? BDF2 requires Np1, N and Nm1
 const int numStates = realm_.number_of_states();

 // declare it
 density_
 = &(metaData_.declare_field<ScalarFieldType>(stk::topology::NODE_RANK,
 "density", numStates));

 // put it on this part
 stk::mesh::put_field(*density_, *part);
}

\(\bullet\) edge field registration:

void
LowMachEquationSystem::register_edge_fields(
 stk::mesh::Part *part)
{
 const int nDim = metaData_.spatial_dimension();
 edgeAreaVec_
 = &(metaData_.declare_field<VectorFieldType>(stk::topology::EDGE_RANK,
 "edge_area_vector"));
 stk::mesh::put_field(*edgeAreaVec_, *part, nDim);
}

\(\bullet\) side/face field registration:

void
MomentumEquationSystem::register_wall_bc(
 stk::mesh::Part *part,
 const stk::topology &theTopo,
 const WallBoundaryConditionData &wallBCData)
{
 // Dirichlet or wall function bc
 if (wallFunctionApproach) {
 stk::topology::rank_t sideRank
 = static_cast<stk::topology::rank_t>(metaData_.side_rank());
 GenericFieldType *wallFrictionVelocityBip
 = &(metaData_.declare_field<GenericFieldType>
 (sideRank, "wall_friction_velocity_bip"));
 stk::mesh::put_field(*wallFrictionVelocityBip, *part, numIp);
 }
}

18.1.8. Field Data Access

Once we have the field registered and put on a part of the mesh, we can
extract the field data anytime that we have the entity in hand. In the
example below, we extract nodal field data and load a workset field.

To obtain a pointer for a field that was put on a node, edge face/side
or element field, the string name used for declaration is used in
addition to the field template type,

VectorFieldType *velocityRTM
 = metaData_.get_field<VectorFieldType>(stk::topology::NODE_RANK,
 "velocity");
ScalarFieldType *density
 = metaData_.get_field<ScalarFieldType>(stk::topology::NODE_RANK,
 "density");}

VectorFieldType *edgeAreaVec
 = metaData_.get_field<VectorFieldType>(stk::topology::EDGE_RANK,
 "edge_area_vector");

GenericFieldType *massFlowRate
 = metaData_.get_field<GenericFieldType>(stk::topology::ELEMENT_RANK,
 "mass_flow_rate_scs");

GenericFieldType *wallFrictionVelocityBip_
 = metaData_.get_field<GenericFieldType>(metaData_.side_rank(),
 "wall_friction_velocity_bip");

18.1.9. State

For fields that require state, the field should have been declared with
the proper number of states (see field declaration section). Once the
field pointer is in hand, the specific field with state is easily
extracted,

ScalarFieldType *density
 = metaData_.get_field<ScalarFieldType>(stk::topology::NODE_RANK,
 "density");
densityNm1_ = &(density->field_of_state(stk::mesh::StateNM1));
densityN_ = &(density->field_of_state(stk::mesh::StateN));
densityNp1_ = &(density->field_of_state(stk::mesh::StateNP1));

With the field pointer already in hand, obtaining the particular data is
field the field data method.

\(\bullet\) nodal field data access:

// gather some data (density at state Np1) into a local workset pointer
p_density[ni] = *stk::mesh::field_data(densityNp1, node);

	\(\bullet\) edge field data access:

	(from an edge bucket loop with the same selector as defined above)

stk::mesh::BucketVector const& edge_buckets
 = bulkData_.get_buckets(stk::topology::EDGE_RANK, s_locally_owned_union);
for (stk::mesh::BucketVector::const_iterator ib = edge_buckets.begin();
 ib != edge_buckets.end() ; ++ib) {
 stk::mesh::Bucket & b = **ib ;
 const stk::mesh::Bucket::size_type length = b.size();

 // pointer to edge area vector and mdot (all of the buckets)
 const double * av = stk::mesh::field_data(*edgeAreaVec_, b);
 const double * mdot = stk::mesh::field_data(*massFlowRate_, b);

 for (stk::mesh::Bucket::size_type k = 0 ; k < length ; ++k) {
 // copy edge area vector to a pointer
 for (int j = 0; j < nDim; ++j)
 p_areaVec[j] = av[k*nDim+j];

 // save off mass flow rate for this edge
 const double tmdot = mdot[k];
 }
}

18.2. High Level Nalu Abstractions

18.2.1. Realm

A realm holds a particular physics set, e.g., low-Mach fluids. Realms
are coupled loosely through a transfer operation. For example, one might
have a turbulent fluids realm, a thermal heat conduction realm and a PMR
realm. The realm also holds a BulkData and MetaData since a realm
requires fields and parts to solve the desired physics set.

18.2.2. EquationSystem

An equation system holds the set of PDEs of interest. As Nalu uses a
pressure projection scheme with split PDE systems, the pre-defined
systems are, LowMach, MixtureFraction, Enthalpy, TurbKineticEnergy, etc.
New monolithic equation system can be easily created and plugged into
the set of all equation systems.

In general, the creation of each equation system is of arbitrary order,
however, in some cases fields required for MixtureFraction, e.g.,
mass_flow_rate might have only been registered on the low-Mach
equation system. As such, if MixtureFraction is created before
LowMachEOS, an error might be noted. This can be easily resolved by
cleaning the code base such that each equation system is “autonomous”.

Each equation system has a set of virtual methods expected to be
implemented. These include, however, are not limited to registration of
nodal fields, edge fields, boundary conditions of fixed type, e.g.,
wall, inflow, symmetry, etc.

 19. References

19. References

	[Aft94]	M.

 Sierra Low Mach Module: Nalu - Verification Manual

Sierra Low Mach Module: Nalu - Verification Manual

The SIERRA Low Mach Module: Nalu (henceforth referred to as Nalu, developed at Sandia, represents a generalized unstructured, massively parallel, variable density turbulent flow capability designed for energy applications. This code base began as an effort to prototype Sierra Toolkit,

 1. Introduction

1. Introduction

The methodology used to evaluate the accuracy of each proposed
scheme will be the method of manufactured solutions. The objective of code
verification is to reveal coding mistakes that affect the order
of accuracy and to determine if the governing discretized equations are being solved correctly.
Quite often, the process of verification reveals algorithmic issues that would otherwise remain
unknown.

In practice, a variety of comparison techniques exist for verification. For example,
benchmark and code-to-code comparison are not considered rigorous due to the errors
that exist in other code solutions, such as from discretization and iteration. Analytic
solutions and the method of manufactured solutions remain the most powerful methods for
code verification, since they provide a means to obtain quantitative error estimations in
space and time.

Roache has made the distinction between code verification and calculation
verification, where calculation verification involves grid refinement required for every
problem solution to assess the magnitude, not order, of the discretization error. Discretization
error, distinguished from modeling and iteration errors, is defined as the difference between
the exact solution to the continuum governing equations and the solution to the algebraic
systems representation due to discretization of the continuum equations. The order of accuracy
can be determined by comparing the discretization error on successively refined grids. Thus, it
is desirable to have an exact solution for comparision to determine the discretization errors.

 2. 2D Unsteady Uniform Property: Convecting Decaying Taylor Vortex

2. 2D Unsteady Uniform Property: Convecting Decaying Taylor Vortex

Verification of first-order and second-order tempor